Skip to main content
Log in

Complementarity of lacustrine pollen and sedimentary DNA in representing vegetation on the central-eastern Tibetan Plateau

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Plant environmental DNA extracted from lacustrine sediments (sedimentary DNA, sedDNA) has been increasingly used to investigate past vegetation changes and human impacts at a high taxonomic resolution. However, the representation of vegetation communities surrounding the lake is still unclear. In this study, we compared plant sedDNA metabarcoding and pollen assemblages from 27 lake surface-sediment samples collected from alpine meadow on the central-eastern Tibetan Plateau to investigate the representation of sedDNA data. In general, the identified components of sedDNA are consistent with the counted pollen taxa and local plant communities. Relative to pollen identification, sedDNA data have higher taxonomic resolution, thus providing a potential approach for reconstructing past plant diversity. The sedDNA signal is strongly influenced by local plants while rarely affected by exogenous plants. Because of the overrepresentation of local plants and PCR bias, the abundance of sedDNA sequence types is very variable among sites, and should be treated with caution when investigating past vegetation cover and climate based on sedDNA data. Our finding suggests that sedDNA analysis can be a complementary approach for investigating the presence/absence of past plants and history of human land-use with higher taxonomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel C, Horion S, Tagesson T, De Keersmaecker W, Seddon A W R, Abdi A M, Fensholt R (2021). The human-environment nexus and vegetation-rainfall sensitivity in tropical drylands. Nat Sustain, 4(1): 25–32

    Google Scholar 

  • Alsos I G, Lammers Y, Yoccoz N G, Jørgensen T, Sjögren P, Gielly L, Edwards M E (2018). Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS One, 13(4): e0195403

    PubMed  PubMed Central  Google Scholar 

  • Alsos I G, Sjögren P, Edwards M E, Landvik J Y, Gielly L, Forwick M, Coissac E, Brown A G, Jakobsen L V, Føreid M K, Pedersen M W (2016). Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene, 26(4): 627–642

    ADS  Google Scholar 

  • Anderson-Carpenter L L, McLachlan J S, Jackson S T, Kuch M, Lumibao C Y, Poinar H N (2011). Ancient DNA from lake sediments: bridging the gap between paleoecology and genetic. BMC Evol Biol, 11: 30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baamrane M A A, Shehzad W, Ouhammou A, Abbad A, Naimi M, Coissac E, Taberlet P, Znari M (2012). Assessment of the food habits of the Moroccan dorcas gazelle in M’ Sabih Talaa, west central Morocco, using the trnL approach. PLoS One, 7: e35643

    ADS  Google Scholar 

  • Birks H H (2003). The importance of plant macrofossils in the reconstruction of Lateglacial vegetation and climate: examples from Scotland, Western Norway, and Minnesota, USA. Quat Sci Rev, 22: 453–473

    ADS  Google Scholar 

  • Birks H J B, Line J M (1992). The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene, 2(1): 1–10

    ADS  Google Scholar 

  • Birks H J B, Birks H H (2016). How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras? New Phytol, 209(2): 499–506

    CAS  PubMed  Google Scholar 

  • Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E (2016). OBITools: a unix-inspired software package for DNA metabarcoding. Mol Ecol Resour, 16: 176–182

    CAS  PubMed  Google Scholar 

  • Cao X, Tian F, Li K, Ni J (2020). Atlas of pollen and spores for common plants from the east Tibetan Plateau. National Tibetan Plateau Data Center

  • Cao X, Tian F, Li K, Ni J, Yu X, Liu L, Wang N (2021). Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions. Earth Syst Sci Data, 13: 3525–3537

    ADS  Google Scholar 

  • Chen F, Ding L, Piao S, Zhou T, Xu B, Yao T, Li X (2021). The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era. Sci Bull (Beijing), 66: 1263–1266

    PubMed  ADS  Google Scholar 

  • Fægri K, Iversen J (1975). Textbook of pollen analysis. Copenhagen: Munksgaard

    Google Scholar 

  • Han J, Cai M, Shao Z, Liu F, Zhang Q, Zhang S, Yu J, Li X, Zhang Z, Zhu D (2021). Vegetation and climate change since the late glacial period on the southern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 572: 110403

    Google Scholar 

  • He J, Yang K, Tang W, Lu H, Qin J, Chen Y, Li X (2020). The first high-resolution meteorological forcing dataset for land process studies over China. Sci Data, 7(1): 25

    PubMed  PubMed Central  Google Scholar 

  • Herzschuh U, Birks H J B, Ni J, Zhao Y, Liu H, Liu X, Grosse G (2010). Holocene land-cover changes on the Tibetan Plateau. Holocene, 20(1): 91–104

    ADS  Google Scholar 

  • Herzschuh U, Kürschner H, Mischke S (2006). Temperature variability and vertical vegetation belt shifts during the last ∼50000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quat Res, 66(1): 133–146

    Google Scholar 

  • Hill M O, Gauch H G Jr (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42(1–3): 47–58

    Google Scholar 

  • Huang S, Stoof-Leichsenring K R, Liu S, Courtin J, Andreev A A, Pestryakova L A, Herzschuh U (2021). Plant sedimentary ancient DNA from Far East Russia covering the last 28000 years reveals different assembly rules in cold and warm climates. Front Ecol Evol, 9: 763747

    Google Scholar 

  • Institute of Geographic Sciences and Natural Resources Research CAS (1990). Atlas of Qinghai-Tibet Plateau. Beijing: Science Press

    Google Scholar 

  • Jackson S T (1990). Pollen source area and representation in small lakes of the northeast United States. Rev Palaeobot Palynol, 63(1–2): 53–76

    Google Scholar 

  • Jacobson G L Jr, Bradshaw R H W (1981). The selection of sites for paleovegetational studies. Quat Res, 16(1): 80–96

    Google Scholar 

  • Jia W H (2020). Modern-process studies of plant DNA in lake sediments, Qinghai-Tibetan Plateau and arid northwestern China. Dissertation for Master’s Degree. Beijing: Capital Normal University

    Google Scholar 

  • Jia W, Anslan S, Chen F, Cao X, Dong H, Dulias K, Gu Z, Heinecke L, Jiang H, Kruse S, Kang W, Li K, Liu S, Liu X, Liu Y, Ni J, Schwalb A, Stoof-Leichsenring K R, Shen W, Tian F, Wang J, Wang Y, Wang Y, Xu H, Yang X, Zhang D, Herzschuh U (2022a). Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects. Quat Sci Rev, 293: 107703

    Google Scholar 

  • Jia W, Liu X, Stoof-Leichsenring K R, Liu S, Li K, Herzschuh U (2022b). Preservation of sedimentary plant DNA in related to lake water chemistry. Environ DNA, 4(2): 425–439

    CAS  Google Scholar 

  • Jia W, Stoof-Leichsenring K, Liu S, Li K, Huang S, Liu X, Ni J, Cao X, Pestryakova L, Mischke S, Herzschuh U (2021). Metabarcoding of modern sedimentary DNA from the Tibetan Plateau and Siberia as a training dataset for vegetation reconstructions. EGU General Assembly, EGU21–14835

    Google Scholar 

  • Jørgensen T, Haile J, Möller P, Andreev A, Boessenkool S, Rasmussen M, Kienast F, Coissac E, Taberlet P, Brochmann C, Bigelow N H, Andersen K, Orlando L, Gilbert M T P, Willerslev E (2012). A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. Mol Ecol, 21: 1989–2003

    PubMed  Google Scholar 

  • Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A, Bates K, Browne P, Broek A V D, Castro M, Cochrane G, Duggan K, Eberhardt R, Faruque N, Gamble J, Diez F G, Harte N, Kulikova T, Lin Q, Lombard V, Lopez R, Mancuso R, McHale M, Nardone F, Silventoinen V, Sobhany S, Stoehr P, Tuli M A, Tzouvara K, Vaughan R, Wu D, Zhu W M, Apweileret R (2005). The EMBL Nucleotide Sequence Database. Nucleic Acids Res, 33: D29–D33

    CAS  PubMed  Google Scholar 

  • Liu L, Wang N, Zhang Y, Yu X, Cao X (2023). Performance of pollen-based vegetation cover reconstruction using lake and soil samples on the Tibetan Plateau. Veget Hist Archaeobot

  • Liu S, Kruse S, Scherler D, Ree R H, Zimmermann H H, Stoof-Leichsenring K R, Epp L S, Mischke S, Herzschuh U (2021). Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nat Commun, 12(1): 2995

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ma Q, Zhu L, Lü X, Wang J, Ju J, Kasper T, Daut G, Haberzettl T (2019). Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau. Global Planet Change, 174: 16–25

    ADS  Google Scholar 

  • Madeja J, Wacnik A, Zyga A, Stankiewicz E, Wypasek E, Guminski W, Harmata K (2009). Bacterial ancient DNA as an indicator of human presence in the past: its correlation with palynological and archaeological data. J Quaternary Sci, 24(4): 317–321

    ADS  Google Scholar 

  • Maher L J (1981). Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev Palaeobot Palynol, 32: 153–191

    Google Scholar 

  • Miehe G, Miehe S, Böhner J, Kaiser K, Hensen I, Madsen D, Liu J, Opgenoorth L (2014). How old is the human footprint in the world’ s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quat Sci Rev, 86: 190–209

    ADS  Google Scholar 

  • Miehe G, Schleuss P M, Seeber E, Babel W, Biermann T, Braendle M, Chen F, Coners H, Foken T, Gerken T, Graf H F, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, Kuzyakov Y, Lai Z, Lehnert L, Leuschner C, Li X, Liu J, Liu S, Ma Y, Miehe S, Mosbrugger V, Noltie H J, Schmidt J, Spielvogel S, Unteregelsbacher S, Wang Y, Willinghöfer S, Xu X, Yang Y, Zhang S, Opgenoorth L, Wesche K (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands–origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci Total Environ, 648: 754–771

    CAS  PubMed  ADS  Google Scholar 

  • Niemeyer B, Epp L S, Stoof-Leichsenring K R, Pestryakova L A, Herzschuh U (2017). A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol Ecol Resour, 17(6): e46–e62

    CAS  PubMed  Google Scholar 

  • Nychka D, Furrer R, Paige J, Sain S (2019). Fields: Tools for spatial data, version 9.6.1

  • Oksanen J, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P R, O’Hara R B, Simpson G L, Solymos P, Stevens M H H, Szoecs E, Wagner H (2019). vegan: Community Ecology Package, version 2.5–4

  • Parducci L, Alsos I G, Unneberg P, Pedersen M W, Han L, Lammers Y, Salonen J S, Väliranta M M, Slotte T, Wohlfarth B (2019). Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front Ecol Evol, 7: 189

    Google Scholar 

  • Parducci L, Jorgensen T, Tollefsrud M M, Elverland E, Alm T, Fontana S L, Bennett K D, Haile J, Matetovici I, Suyama Y, Edwards M E, Andersen K, Rasmussen M, Boessenkool S, Coissac E, Brochmann C, Taberlet P, Houmark-Nielsen M, Larsen N K, Orlando L, Gilbert M T P, Kjaer K H, Alsos I G, Willerslev E (2012). Glacial survival of boreal trees in northern Scandinavia. Science, 335: 1083–1086

    CAS  PubMed  ADS  Google Scholar 

  • Piao S, Yin G, Tan J, Cheng L, Huang M, Li Y, Liu R, Mao J, Myneni R B, Peng S, Poulter B, Shi X, Xiao Z, Zeng N, Zeng Z, Wang Y (2015). Detection and attribution of vegetation greening trend in China over the last 30 years. Glob Change Biol, 21(4): 1601–1609

    ADS  Google Scholar 

  • Piao S, Zhang X, Wang T, Liang E, Wang S, Zhu J, Niu B (2019). Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin Sci Bull, 64(27): 2842–2855 (in Chinese)

    Google Scholar 

  • Prentice I C (1980). Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev Palaeobot Palynol, 31: 71–104

    Google Scholar 

  • R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

  • Shen J, Liu X, Ryo M, Wang S, Yang X (2005). A high-resolution climatic change since the Late Glacial Age inferred from multiproxy of sediments in Qinghai Lake. Sci China Earth Sci, 48(6): 742–751

    Google Scholar 

  • Soininen E M, Gauthier G, Bilodeau F, Berteaux D, Gielly L, Taberlet P, Gussarova G, Bellemain E, Hassel K, Stenøien H K, Epp L, Schrøder-Nielsen A, Brochmann C, Yoccoz N G (2015). Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS One, 10(1): e0115335

    PubMed  PubMed Central  Google Scholar 

  • Sønstebø J H, Gielly L, Brysting A K, Elven R, Edwards M, Haile J, Willerslev E, Coissac E, Rioux D, Sannier J, Taberlet P, Brochmann C (2010). Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol Ecol Resour, 10(6): 1009–1018

    PubMed  Google Scholar 

  • Stoof-Leichsenring K R, Liu S, Jia W, Li K, Pestryakova L A, Mischke S, Cao X, Liu X, Ni J, Neuhaus S, Herzschuh U (2020). Plant diversity in sedimentary DNA obtained from high-latitude (Siberia) and high-elevation lakes (China). Biodivers Data J, 8: e57089

    PubMed  PubMed Central  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res, 35(3): e14

    PubMed  Google Scholar 

  • Tang L Y, Mao L Y, Shu J W, Li C H, Shen C M, Zhou Z Z (2017). Atlas of Quaternary Pollen and Spores in China. Beijing: Science Press

    Google Scholar 

  • ter Braak C J F, Prentice I C (1988). A theory of gradient analysis. Adv Ecol Res, 18: 271–317

    Google Scholar 

  • ter Braak C J F, Verdonschot P F M (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci, 57(3): 255–289

    Google Scholar 

  • Tian F, Cao X, Zhang R, Xu Q, Ding W, Liu X, Pan B, Chen J (2020). Spatial homogenization of soil-surface pollen assemblages improves the reliability of pollen-climate calibration-set. Sci China Earth Sci, 63(11): 1758–1766

    ADS  Google Scholar 

  • Wang B (2006). The Asian Monsoon. Berlin, Heidelberg: Springer

    Google Scholar 

  • Wang F X, Qian N F, Zhang Y L, Yang H Q (1995). Pollen Flora of China. Beijing: Science Press

    Google Scholar 

  • Wang N, Liu L, Zhang Y, Cao X (2022). A modern pollen data set for the forest–meadow–steppe ecotone from the Tibetan Plateau and its potential use in past vegetation reconstruction. Boreas, 51(4): 847–858

    Google Scholar 

  • Wang Y, Herzschuh U (2011). Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen–based REVEALS model. Rev Palaeobot Palynol, 168(1): 31–40

    Google Scholar 

  • Wang Y, Pedersen M W, Alsos I G, De Sanctis B, Racimo F, Prohaska A, Coissac E, Owens H L, Merkel M K F, Fernandez-Guerra A, Rouillard A, Lammers Y, Alberti A, Denoeud F, Money D, Ruter A H, McColl H, Larsen N K, Cherezova A A, Edwards M E, Fedorov G B, Haile J, Orlando L, Vinner L, Korneliussen T S, Beilman D W, Bjørk A A, Cao J, Dockter C, Esdale J, Gusarova G, Kjeldsen K K, Mangerud J, Rasic J T, Skadhauge B, Svendsen J I, Tikhonov A, Wincker P, Xing Y, Zhang Y, Froese D G, Rahbek C, Bravo D N, Holden P B, Edwards N R, Durbin R, Meltzer D J, Kjær K H, Möller P, Willerslev E (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 600(7887): 86–92

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards M E, Lorenzen E D, Vestergård M, Gussarova G, Haile J, Craine J, Gielly L, Boessenkool S, Epp L S, Pearman P B, Cheddadi R, Murray D, Bråthen K A, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos I G, Bellemain E, Brysting A K, Elven R, Sønstebø J H, Murton J, Sher A, Rasmussen M, Rønn R, Mourier T, Cooper A, Austin J, Möller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts R G, MacPhee R D E, Gilbert M T P, Kjær K H, Orlando L, Brochmann C, Taberlet P (2014). Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 506(7486): 47–51

    CAS  PubMed  ADS  Google Scholar 

  • Wu Z Y (1995). The Vegetation of China. Beijing: Science Press (in Chinese)

    Google Scholar 

  • Yoccoz N G, Bråthen K A, Gielly L, Haile J, Edwards M E, Goslar T, Von Stedingk H, Brysting A K, Coissac E, Pompanon F, Sønstebø J H, Miquel C, Valentini A, De Bello F, Chave J, Thuiller W, Wincker P, Cruaud C, Gavory F, Rasmussen M, Gilbert M T, Orlando L, Brochmann C, Willerslev E, Taberlet P (2012). DNA from soil mirrors plant taxonomic and growth form diversity. Mol Ecol, 21(15): 3647–3655

    CAS  PubMed  Google Scholar 

  • Zhou X, Yu J, Spengler R N, Shen H, Zhao K, Ge J, Bao Y, Liu J, Yang Q, Chen G, Jia P, Li X (2020). 5200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nat Plants, 6: 78–87

    CAS  PubMed  Google Scholar 

  • Zhu L, Lü X, Wang J, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R, Schwalb A, Mäusbacher R (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Sci Rep, 5: 13318

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42071107 and 41877459), the Mobility program of the Sino-German Center for Research Promotion (No. M-0359), the CAS Pioneer Hundred Talents Program (Xianyong Cao), and the Russian Science Foundation (No. 20-17-00110). Cathy Jenks provided help with language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Tian.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Chen, M., Jia, W. et al. Complementarity of lacustrine pollen and sedimentary DNA in representing vegetation on the central-eastern Tibetan Plateau. Front. Earth Sci. 17, 1037–1048 (2023). https://doi.org/10.1007/s11707-022-1075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-022-1075-1

Keywords

Navigation