Skip to main content
Log in

Anisotropic Friction of the Ventral Scales in the Snake Lampropeltis getula californiae

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Since the ventral body side of snakes is in almost continuous contact with the substrate during undulating locomotion, their skin is presumably adapted to generate high friction for propulsion and low friction to slide along the substrate. In this study, the microstructure of ventral scales was analyzed using scanning electron microscopy, atomic force microscope and confocal laser scanning microscopy. Dynamic friction was investigated by a microtribometer. The ventral scales demonstrated anisotropic frictional properties. To analyze the role of the stiffness of underlying layers on the frictional anisotropy, two different types of scale cushioning (hard and soft) were tested. To estimate frictional forces of the skin surface on rough substrates, additional measurements with a rough surface were performed. Frictional anisotropy for both types of scale cushioning and rough surfaces was revealed. However, for both types of surface roughness, the anisotropy was stronger expressed in the soft-cushioned sample. This effect could be caused by (1) the stronger interaction of the microstructure with the substrate in soft-cushioned samples due to larger real contact area with the substrate and (2) the composite character of the skin of this snake species with embedded, highly ordered fiber-like structures, which may cause anisotropy in material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Renous, S., Gasc, J.P., Diop, A.: Microstructure of the tegumentary surface of the Squamata (Reptilia) in relation to their spatial position and their locomotion. Fortschr. Zool. 30, 487–489 (1985)

    Google Scholar 

  2. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1986)

    Google Scholar 

  3. Scherge, M., Gorb, S.N.: Biological Micro- and Nanotribology. Springer, Berlin (2001)

    Book  Google Scholar 

  4. Landmann, L.: Keratin formation and barrier mechanisms in the epidermis of Natrix natrix (Reptilia, Sepentes): an ultrastructural study. J. Morphol. 162, 93–126 (1979)

    Article  Google Scholar 

  5. Landmann, L., Stolinski, C., Martin, B.: The permeability barrier in the epidermis of the grass snake during the resting stage of the sloughing cycle. Cell Tissue Res. 215, 369–382 (1981)

    Article  Google Scholar 

  6. Lillywhite, H.B., Maderson, P.F.A.: Skin structure and permeability. In: Gans, C., Pough, F.H. (eds.) Biology of the Reptilia, Vol. 12 Physiology C, Physiological Ecology, pp. 379–442. Academic Press, New York (1982)

    Google Scholar 

  7. Lillywhite, H.B.: Water relations of tetrapod integument. J. Exp. Biol. 209, 202–226 (2005)

    Article  Google Scholar 

  8. Alibardi, L.: Differentiation of snake epidermis, with emphasis on the shedding layer. J. Morphol. 264, 178–190 (2005)

    Article  Google Scholar 

  9. Leydig, F.: Über die äusseren Bedeckungen der Reptilien und Amphibien. Archiv für mikroskopische Anatomie 9(1), 753–794 (1873)

  10. Picado, C.: Epidermal microornaments of the Crotalinae. Bull. Antivenin. Inst. Am. 4, 104–105 (1931)

    Google Scholar 

  11. Hoge, A.R., Santos, P.S.: Submicroscopic structure of “stratum corneum” of snakes. Science 118, 410–411 (1953)

    Article  Google Scholar 

  12. Maderson, P.F.A.: The skin of lizards and snakes. Br. J. Herpetol. 3, 151–154 (1964)

    Google Scholar 

  13. Maderson, P.F.A.: The structure and development of the squamate epidermis. In: Lyne, A.G., Short, B.F. (eds.) The biology of the skin and hair growth, pp. 129–153. Angus and Robertson, Sydney (1965)

    Google Scholar 

  14. Maderson, P.F.A.: When? why? and how?: some speculations on the evolution of the vertebrate integument. Am. Zool. 12, 159–171 (1972)

    Google Scholar 

  15. Price, R.M.: Dorsal snake scale microdermatoglyphics: ecological indicator or taxonomic tool? J. Herpetol. 16, 294–306 (1982)

    Article  Google Scholar 

  16. Bea, A., Fontarnau, R.: The study of the sloughing cycle in snakes by means of scanning electron microscopy. In: Robek, Z. (ed.) Studies in Herpetology, pp. 373–376. Charles University, Praque (1986)

    Google Scholar 

  17. Irish, F.J., Williams, E.E., Seling, E.: Scanning electron microscopy of changes in epidermal structure occurring during the shedding cycle in squamate reptiles. J. Morphol. 197, 105–126 (1988)

    Article  Google Scholar 

  18. Chiasson, R.B., Lowe, C.H.: Ultrastructural scale patterns in Nerodia and Thamnophis. J. Herpetol. 23, 109–118 (1989)

    Article  Google Scholar 

  19. Price, R.M., Kelly, P.: Microdermatoglyphics: basal patterns and transition zones. J. Herpetol. 23, 244–261 (1989)

    Article  Google Scholar 

  20. Hazel, J., Stone, M., Grace, M.S., Tsukruk, V.V.: Nanoscale design of snake skin for reptation locomotions via friction anisotropy. J. Biomech. 32, 477–484 (1999)

    Article  Google Scholar 

  21. Arnold, E.N.: History and function of scale microornamentation in lacertid lizards. J. Morphol. 252, 145–169 (2002)

    Article  Google Scholar 

  22. Gower, D.J.: Scale microornamentation of uropeltid snakes. J. Morphol. 258, 249–268 (2003)

    Article  Google Scholar 

  23. Berthé, R.A., Westhoff, G., Bleckmann, H., Gorb, S.N.: Surface structure and frictional properties of the Amazon tree boa Corallus hortulanus (Squamata, Boidae). J. Comp. Physiol. A. 195, 311–318 (2009)

    Article  Google Scholar 

  24. Abdel-Aal, H.A., Vargiolu, R., Zahouani, H., El Mansori, M.: Preliminary investigation of the frictional response of reptilian shed skin. Wear 290–291, 51–60 (2012)

    Article  Google Scholar 

  25. Schmidt, C.V., Gorb, S.N.: Snake Scale Microstructure: Phylogenetic Significance and Functional Adaptations. Zoologica. Schweinsbart Science, Stuttgart (2012)

    Google Scholar 

  26. Schmidt, D.: Die Kettennatter. Lampropeltis getula. Natur und Tier-Verlag GmbH, Münster (2004)

    Google Scholar 

  27. Klein, M.-C.G., Gorb, S.N.: Epidermis architecture and material properties of the skin of four snake species. J. R. Soc. Interface 9–76, 3140–3155 (2012)

    Article  Google Scholar 

  28. Benz, M.J., Kovalev, A.E., Gorb, S.N.: Anisotropic frictional properties in snakes. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics (2012)

  29. Klein, M.-C.G., Gorb, S.N.: Ultrastructure and abrasion-resistance of the ventral epidermis of four snake species (Squamata, Boidae). Zool. (in press)

  30. Gray, J., Lissmann, H.W.: The kinetics of locomotion of the grass-snake. J. Exp. Biol. 26, 354–367 (1950)

    Google Scholar 

  31. Hu, L.D., Nirody, J., Scott, T., Shelley, M.J.: The mechanics of slithering locomotion. PNAS 106, 10081–10085 (2009)

    Article  Google Scholar 

  32. Marvi, H., Hu, D.L.: Friction enhancement in concertina locomotion of snakes. J. R. Soc. Interface 9–76, 3067–3080 (2012)

    Article  Google Scholar 

  33. Blainville, H.D.: Description de quelques espèces de reptiles de la Californie. Nouvelles Annales Muséum National D’Histoire Naturelle Paris 4, 233–296 (1835)

    Google Scholar 

  34. Blanchard, F.N.: A revision of the king snakes, genus Lampropeltis. Bull. US Natl Mus. 114, 1–260 (1921)

    Google Scholar 

  35. Pyron, R.A., Burbrink, F.T.: Systematics of the Common Kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa 2241, 22–32 (2009)

    Google Scholar 

  36. Baum, M.J., Heepe, L., Gorb, S.N.: Friction behavior of a microstructured polymer surface inspired by snake skin. Beilstein J. Nanotechnol. 5(1), 83–97 (2014)

    Article  Google Scholar 

  37. Peressadko, A.G., Hosoda, N., Persson, B.N.J.: Influence of surface roughness on adhesion between elastic bodies. Phys. Rev. Let. 95, 124301 (2005)

    Article  Google Scholar 

  38. Hertz, H.: Über die Berührung fester elastischer Körper. Journal für die Reine und Angewandte Mathematik 92, 156–171 (1881)

    Google Scholar 

  39. Suresh, S.: Graded materials for resistance to contact deformation and damage. Science 292, 2447–2451 (2001)

    Article  Google Scholar 

  40. Klein, M.-C., Deuschle, J., Gorb, S.: Material properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae). J. Comp. Physiol. A. 196, 659–668 (2010)

    Article  Google Scholar 

  41. Lancaster, J.K.: The effect of carbon fibre reinforcement on the friction and wear of polymers. J. Phys. D Appl. Phys. 1, 549–560 (1968)

    Article  Google Scholar 

  42. Bhushan, B.: Introduction to Tribology. Wiley, New York (2002)

    Google Scholar 

  43. Politi, Y., Priewasser, M., Pippel, E., Zaslansky, P., Hartmann, J., Siegel, S., Li, C., Barth, F.G., Fratzl, P.: A spider’s fang: how to design an injection needle using chitin-based composite material. Adv. Funct. Mater. 22(12), 2519–2528 (2012)

    Article  Google Scholar 

  44. Persson, B.N.J.: Sliding friction: physical principles and applications, 2nd edn. Springer, Berlin (2000)

    Book  Google Scholar 

  45. Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101–116104 (2001)

    Article  Google Scholar 

  46. Persson, B.N.J., Volokitin, A.I.: Rubber friction on smooth surfaces. Euro. Phys. J. E 21, 69–80 (2006)

    Article  Google Scholar 

  47. Guddei, B., Ahmed, S.I.-U.: Rolling friction of single balls in a flat-ball-flat-contact as a function of surface roughness. Tribol. Lett. 51, 219–226 (2013)

    Article  Google Scholar 

  48. Mattison, C.: The encyclopedia of snakes. Cassel & Co, London (1995)

    Google Scholar 

  49. Mattison, C.: Schlangen. Dorling Kindersley Publishing, London (1999)

    Google Scholar 

  50. Greene, H.W.: Snakes: The Evolution of Mystery in Nature. University of California Press, Berkeley (1997)

    Google Scholar 

  51. Mattison, C.: The encyclopedia of snakes. Cassel & Co, London (2008)

    Google Scholar 

  52. Alexander, R.M.: Principles of animal locomotion. Princeton University Press, Princeton (2002)

    Google Scholar 

  53. Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Part I. Clarendon Press, Oxford (1950)

    Google Scholar 

  54. Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Part II. Clarendon Press, Oxford (1964)

    Google Scholar 

  55. Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade. Brit. J. Phys. 17, 1521 (1966)

    Article  Google Scholar 

  56. Lorenz, B., Persson, S., Tada, T.: Rubber friction: comparison of theory with experiment. Euro. Phys. J. E 34, 128–139 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kirstin Dening and Henrik Peisker for performing AFM measurements, and Stephan Bootsmann for the animal care. We would also like to acknowledge for valuable discussions M. Rohn (Profactor GmbH, Austria) supported by the NILcim project. Figure 7 was reproduced with the permission from the paper by Klein and Gorb (Zoology, Elsevier). This work was funded by the Federal Ministry of Education and Research, Germany within the BIONA program (01 RB 0812A) to SNG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina J. Baum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, M.J., Kovalev, A.E., Michels, J. et al. Anisotropic Friction of the Ventral Scales in the Snake Lampropeltis getula californiae . Tribol Lett 54, 139–150 (2014). https://doi.org/10.1007/s11249-014-0319-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0319-y

Keywords

Navigation