Skip to main content

Advertisement

Log in

The crust-mantle transition and the Moho beneath the Vogtland/West Bohemian region in the light of different seismic methods

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The structure of the crust and the crust-mantle boundary in the Vogtland/West Bohemian region have been a target of several seismic measurements for the last 25 years, beginning with the steep-angle reflection seismic studies (DEKORP-4/KTB, MVE-90, 9HR), the refraction and wide-angle experiments (GRANU’95, CELEBRATION 2000, SUDETES 2003), and followed by passive seismic studies (receiver functions, teleseismic tomography). The steep-angle reflection studies imaged a highly reflective lower crust (4 to 6 km thick) with the Moho interpreted in a depth between 30 and 32 km and a thinner crust beneath the Eger Rift. The refraction and wide-angle reflection seismic studies (CELEBRATION 2000) revealed strong wide-angle reflections in a depth of 26–28 km interpreted as the top of the lower crust. Long coda of these reflections indicates strong reflectivity in the lower crustal layer, a phenomenon frequently observed in the Caledonian and Variscan areas. The receiver function studies detected one strong conversion from the base of the crust interpreted as the Moho discontinuity at a depth between 27 and 37 km (average at about 31 km). The discrepancies in the Moho depth determination could be partly attributed to different background of the methods and their resolution, but could not fully explain them. So that new receivers function modelling was provided. It revealed that, instead of a first-order Moho discontinuity, the observations can be explained with a lower crustal layer or a crust-mantle transition zone with a maximum thickness of 5 km. The consequent synthetic ray-tracing modelling resulted in the model with the top of the lower crust at 28 km, where highly reflective lower crustal layer can obscure the Moho reflection at a depth of 32–33 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton P.J., Matthews D., Hall J. and Warner M., 1984. Moho beneath the North Sea compared on normal incidence and wide-angle seismic records. Nature, 308, 55–56.

    Article  Google Scholar 

  • Behr H.-J., Dürbaum H.-J. and Bankwitz P., 1994. Crustal structure of the Saxothuringian Zone: Results of the deep seismic profile MVE-90(East). Z. Geol. Wiss., 22, 647–769.

    Google Scholar 

  • Birch F., 1961. The velocity of compressional waves in rocks to 10 kilobars, part 2. J. Geophys. Res., 66, 2199–2224.

    Article  Google Scholar 

  • Braile L.W. and Chiang C.S., 1986. The continental Mohorovičić discontinuity: results from near vertical and wide-angle seismic reflection studies. In: Barazangi M. and Brown L. (Eds.), Reflection Seismology: A Global Perspective. Amer. Geophys. Union, Geodynamics Series, 13, 257–272.

  • Bräuer K., Kämpf H., Niedermann S. and Strauch G., 2005a. Evidence for ascending upper mantle-derived melt beneath the Cheb basin, central Europe. Geophys. Res. Lett., 32, L08303, doi: 10.1029/2004GL022205.

    Article  Google Scholar 

  • Bräuer K., Kämpf H., Niedermann S. and Strauch G., 2005b. Correction to “Evidence for ascending upper mantle-derived melt beneath the Cheb basin, central Europe”. Geophys. Res. Lett., 32, L18304, doi: 10.1029/2005GL02434.

    Article  Google Scholar 

  • Červený V. and Pšenčík I., 1984. SEIS83-Numerical modelling of seismic wave fields in 2-D laterally varying layered structures by the ray method. In: Engdal E.R. (Ed.), Documentation of Earthquake Algorithms. Rep.SE-35, World Data Center A, Boulder, CO, 36–40.

    Google Scholar 

  • Cook F.A., 2002. Fine structure of the continental reflection Moho. GSA Bull., 114, 64–79.

    Article  Google Scholar 

  • Cox K.G., 1980. A model for flood basalt volcanism. J. Petrol., 21, 629–650.

    Google Scholar 

  • DEKORP Research Group, 1988. Results of the DEKORP 4/KTB Oberpfalz deep seismic reflection investigations. J. Geophys., 62, 69–101.

    Google Scholar 

  • DEKORP Research Group, 1994. The deep reflection seismic profiles DEKORP 3/MVE-90. Z. Geol. Wiss., 22, 623–824.

    Google Scholar 

  • DEKORP and Orogenic Processes Working Groups, 1999. Structure of the Saxonian Granulites: Geological and geophysical constraints on the exhumation of high-pressure/high-temperature rocks in the mid-European Variscan belt. Tectonics, 18, 756–773.

    Article  Google Scholar 

  • Enderle U., Schuster K., Prodehl C., Schultze A. and Briebach J., 1998. The refraction seismic experiment GRANU’95 in the Saxothuringian belt, southeastern Germany. Geophys. J. Int., 133, 245–259.

    Article  Google Scholar 

  • Fischer T. and Horálek J., 2003. Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J. Geodyn., 35, 125–144.

    Article  Google Scholar 

  • Fischer T. and Michálek J., 2008. Post 2000-swarm microearthquake activity in the principal focal zone of West Bohemia/Vogtland: space-time distribution and waveform similarity analysis. Stud. Geophys. Geod., 52, 493–511.

    Article  Google Scholar 

  • Fuchs K. and Müller G., 1971. Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. R. Astron. Soc., 23, 417–433.

    Google Scholar 

  • Geissler W.H., Kämpf H., Kind R., Klinge K., Plenefisch T., Horálek J., Zedník J. and Nehybka V., 2005. Seismic structure and location of a CO2 source in the upper mantle of the western Eger rift, Central Europe. Tectonics, 24, TC5001, doi: 10.10292004TC001672.

    Article  Google Scholar 

  • Geissler W.H., Kind R. and Yuan X., 2008. Upper mantle and lithospheric heteroheneities in central and eastern Europe seen by teleseismic receiver functions. Geophys. J. Int., 174, 351–376, doi: 10.1111/j.1365-246x.2008.03767.x.

    Article  Google Scholar 

  • Grad M., Guterch A., Mazur S., Keller G.R., Špičák A., Hrubcová P., Geissler W.H. and SUDETES 2003 Working Group, 2008. Lithospheric structure of the Bohemian Massif and adjacent Variscan belt in central Europe based on Profile S01 from the SUDETES 2003 experiment. J. Geophys. Res., 113, B10304, doi: 10.1029/2007JB005497.

    Article  Google Scholar 

  • Guterch A., Grad M., Keller G.R., Posgay K., Vozár J., Špičák A., Brueckl E., Hajnal Z., Thybo H., Selvi O. and CELEBRATION 2000 Experiment Team, 2003. CELEBRATION 2000 seismic experiment. Stud. Geophys. Geod., 47, 659–670.

    Article  Google Scholar 

  • Hammer P.T.C. and Clowes R.M., 1997. Moho reflectivity patterns-a comparison of Canadian lithoprobe transects. Tectonophysics, 269, 179–198.

    Article  Google Scholar 

  • Heuer B., Geissler W.H., Kind R. and Kämpf H., 2006. Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geophys. Res. Lett., 33, L05311, doi: 10.1029/2005GL025158.

    Article  Google Scholar 

  • Horálek J., Boušková A., Hampl F. and Fischer T., 1996. Seismic regime of the West-Bohemian earthquake swarm region: Preliminary results. Stud. Geophys. Geod., 40, 398–412.

    Article  Google Scholar 

  • Horálek J., Fischer T., Bousková A. and Jedlička P., 2000. The Western Bohemia/Vogtland region in the light of the Webnet network. Stud. Geophys. Geod., 44, 107–125.

    Article  Google Scholar 

  • Hrubcová P., Środa P., Špičák A., Guterch A., Grad M., Keller R., Brückl E. and Thybo H., 2005. Crustal and uppermost mantle structure of the Bohemian Massif based on data from CELEBRATION 2000 experiment. J. Geophys. Res., 110, B11305, doi: 10.1029/2004JB003080.

    Article  Google Scholar 

  • Jensen S.L., Janik T., Thybo H. and POLONAISE Working Group, 1999. Seismic structure of the Palaeozoic Platform along POLONAISE’97 profile P1 in northwestern Poland. Tectonophysics, 314, 123–144.

    Article  Google Scholar 

  • Jones K.A., Warner M.R., Morgan R.P.L., Morgan J.V., Barton P.J. and Price C.E., 1996. Coincident normal-incidence and wide-angle reflections from the Moho: evidence for crustal seismic anisotropy. Tectonophysics, 264, 205–217.

    Article  Google Scholar 

  • Kennett B.L.N. and Engdahl E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429–565.

    Article  Google Scholar 

  • Kind R., Kosarev G.L. and Petersen N.V., 1995. Receiver functions at the Stations of the German Regional Seismic Network (GRSN). Geophys. J. Int., 121, 191–202.

    Article  Google Scholar 

  • Kolář P. and Boušková A., 2003. On some anomalies of Vp/Vs ratio of West Bohemain swarm 2000-preliminary results. Acta Montana, 22, 51–57.

    Google Scholar 

  • Mengel K. and Kern H., 1991. Evolution of the petrological and seismic Moho — Implications for the continental crust/mantle boundary. Terra Nova, 4, 109–123.

    Article  Google Scholar 

  • Mohorovičić A., 1910. Das Beben Vom 8. ×. 1909. Jahrbuch Meterologie Observatorie Zagrab, 9, 1–63.

    Google Scholar 

  • Prodehl C., Mueller S. and Haak V., 1995. The European Cenozoic rift system. In: Olsen K.H. (Ed.), Continental Rifts: Evolution, Structure, Tectonics. Developments in Geotectonics, Elsevier, Amsterdam, The Netherlands, 133–212.

    Google Scholar 

  • Sandmeier K.-J. and Wenzel F., 1990. Lower crustal petrology from wide-angle P-and S-wave measurements in the Black Forest. Tectonophysics, 173, 495–505.

    Article  Google Scholar 

  • Tomek Č., Dvořáková V. and Vrána S., 1997. Geological interpretation of the 9HR and 503M seismic profiles in Western Bohemia. In: Vrána S. and Štedrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci., 47, 43–50.

  • Vavryčuk V., 1993. Crustal anisotropy from local observations of shear-wave splitting in West Bohemia, Czech Republic. Bull. Seismol. Soc. Amer., 83, 1420–1441.

    Google Scholar 

  • Vavryčuk V. and Boušková A., 2008. S-wave splitting from records of local micro-earthquakes in West Bohemia/Vogtland: an indicator of complex crustal anisotropy. Stud. Geophys. Geod., 52, 631–650.

    Article  Google Scholar 

  • Vinnik L.P., 1977. Detection of waves converted from P to S in the mantle. Phys. Earth Planet. Int., 15, 39–45.

    Article  Google Scholar 

  • Wilde-Piórko M., Saul J. and Grad M., 2005. Differences in the crustal and uppermost mantle structure of the Bohemian Massif from teleseismic receiver functions. Stud. Geophys. Geod., 49, 85–107.

    Article  Google Scholar 

  • Yuan X., Ni. J., Kind R., Mechie J. and Sandvol E., 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J. Geophys. Res., 102(B12), 27491–27500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavla Hrubcová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrubcová, P., Geissler, W.H. The crust-mantle transition and the Moho beneath the Vogtland/West Bohemian region in the light of different seismic methods. Stud Geophys Geod 53, 275–294 (2009). https://doi.org/10.1007/s11200-009-0018-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-009-0018-6

Key words

Navigation