Skip to main content
Log in

Defining megathrust tsunami source scenarios for northernmost Cascadia

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

For assessing tsunami hazard in northernmost Cascadia, there is an urgent need to define tsunami sources due to megathrust rupture. Even though the knowledge of Cascadia fault structure and rupture behaviour is limited at present, geologically and mechanically plausible scenarios can still be designed. In this work, we use three-dimensional dislocation modelling to construct three types of rupture scenarios and illustrate their effects on tsunami generation and propagation. The first type, buried rupture, is a classical model based on the assumption of coseismic strengthening of the shallowest part of the fault. In the second type, splay-faulting rupture, fault slip is diverted to a main splay fault, enhancing seafloor uplift. Although the presence or absence of such a main splay fault is not yet confirmed by structural observations, this scenario cannot be excluded from hazard assessment. In the third type, trench-breaching rupture, slip extends to the deformation front and breaks the seafloor by activating a frontal thrust. The model frontal thrust, based on information extracted from multichannel seismic data, is hypothetically continuous along strike. Our low-resolution tsunami simulation indicates that, compared to the buried rupture, coastal wave surface elevation generated by the splay-faulting rupture is generally 50–100% higher, but that by trench-breaching rupture is slightly lower, especially if slip of the frontal thrust is large (e.g. 100% of peak slip). Wave elevation in the trench-breaching scenario depends on a trade-off between enhanced short-wavelength seafloor uplift over the frontal thrust and reduced uplift over a broader area farther landward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allen TI, Hayes GP (2017) Alternative rupture-scaling relationships for subduction interface and other offshore environments. Bull Seismol Soc Am 107(3):1240–1253

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis.NOAA Technical Memorandum NESDIS NGDC-24

  • Atwater BF, Nelson AR, Clague JJ, Carver GA, Yamaguchi DK, Bobrowsky PT, Bourgeois J, Darienzo ME, Grant WC, Hemphill-Haley E, Kelsey HM, Jacoby GC, Nishenko SP, Palmer SP, Peterson CD, Reinhart MA (1995) Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthq spectra 11(1):1–18

    Article  Google Scholar 

  • Blaser L, Krüger F, Ohrnberger M, Scherbaum F (2010) Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 100:2914–2926

    Article  Google Scholar 

  • Carignan KS, Eakins BW, Love MR, Sutherland MG, McLean SJ (2013) Bathymetric digital elevation model of British Columbia, Canada: procedures, data sources, and analysis. Prepared for NOAA, Pacific Marine Environmental Laboratory (PMEL) by the NOAA National Geophysical Data Centre (NGDC)

  • Cherniawsky JY, Titov VV, Wang K, Li JY (2007) Numerical simulations of tsunami waves and currents for southern Vancouver Island from a Cascadia megathrust earthquake. Pure appl Geophys 164(2–3):465–492

    Article  Google Scholar 

  • Clowes RM, Yorath CJ, Hyndman RD (1987) Reflection mapping across the convergent margin of western Canada. Geophys J Int 89(1):79–84

    Article  Google Scholar 

  • Cummins PR, Kaneda Y (2000) Possible splay fault slip during the 1946 Nankai earthquake. Geophys Res Lett 27(17):2725–2728

    Article  Google Scholar 

  • Davis EE, Hyndman RD (1989) Accretion and recent deformation of sediments along the northern Cascadia subduction zone. Geol Soc Am Bull 101(11):1465–1480

    Article  Google Scholar 

  • Di Toro G, Han R, Hirose T, De Paola N, Nielsen S, Mizoguchi K, Ferri F, Cocco M, Shimamoto T (2011) Fault lubrication during earthquakes. Nature 471(7339):494–498

    Article  Google Scholar 

  • Flück P, Hyndman RD, Wang K (1997) Three-dimensional dislocation model for great earthquakes of the Cascadia subduction zone. J Geophys Res: Sol Earth 102(B9):20539–20550

    Article  Google Scholar 

  • Fujiwara T, Kodaira S, Kaiho Y, Takahashi N, Kaneda Y (2011) The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis. Science 334(6060):1240

    Article  Google Scholar 

  • Gao D (2016) Defining megathrust tsunami sources at northernmost Cascadia using thermal and structural information. M.Sc. thesis, Univ. of Victoria, Victoria, BC, Canada

  • Gao D, Wang K, Davis EE, Jiang Y, Insua TL, He J (2017) Thermal state of the explorer segment of the Cascadia subduction zone: implications for seismic and tsunami hazards. Geochem Geophys Geosyst 18(4):1569–1579

    Article  Google Scholar 

  • Goldfinger C, Nelson CH, Morey AE, Johnson JE, Patton JR, Karabanov E, Gutierrez-Pastor J, Eriksson AT, Gracia E, Dunhill G, Enkin RJ (2012) Turbidite event history: Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. U.S. Geological Survey Professional Paper, 1661, 170

  • Gulick SP, Austin JA Jr, McNeill LC, Bangs NL, Martin KM, Henstock TJ, Bull JM, Dean S, Djajadihardja YS, Permana H (2011) Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments. Nat Geosci 4(7):453–456

    Article  Google Scholar 

  • Han S, Bangs NL, Carbotte SM, Saffer DM, Gibson JC (2017) Links between sediment consolidation and Cascadia megathrust slip behavior. Nat Geosci 10(12):954–959. https://doi.org/10.1038/s41561-017-0007-2

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Henstock TJ, McNeill LC, Tappin DR (2006) Seafloor morphology of the Sumatran subduction zone: surface rupture during megathrust earthquakes? Geology 34(6):485–488

    Article  Google Scholar 

  • Horrillo J, Grilli ST, Nicolsky D, Roeber V, Zhang J (2015) Performance benchmarking tsunami models for NTHMP’s inundation mapping activities. Pure appl Geophys 172(3–4):869–884

    Article  Google Scholar 

  • Hsu YJ, Simons M, Avouac JP, Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y (2006) Frictional afterslip following the 2005 Nias-Simeulue earthquake. Sumatra Sci 312(5782):1921–1926

    Google Scholar 

  • Hu Y, Wang K (2008) Coseismic strengthening of the shallow portion of the subduction fault and its effects on wedge taper. J Geophys Res: Sol Earth 113:B12411

    Article  Google Scholar 

  • Hyndman RD, Spence GD, Yuan T, Davis EE (1994) 10. Regional geophysics and structural framework of the Vancouver Island accretionary prism. In: Proceedings of the ocean drilling program, initial reports, 146(1)

  • Kodaira S, No T, Nakamura Y, Fujiwara T, Kaiho Y, Miura S, Takahashi N, Kaneda Y, Taira A (2012) Coseismic fault rupture at the trench axis during the 2011 Tohoku-Oki earthquake. Nat Geosci 5(9):646–650

    Article  Google Scholar 

  • Leonard LJ, Rogers GC, Mazzotti S (2012) A preliminary tsunami hazard assessment of the Canadian coastline. Geological Survey of Canada, Open File 7201:126

    Google Scholar 

  • Lotto GC, Nava G, Dunham EM (2017) Should tsunami simulations include a nonzero initial horizontal velocity? Earth Planet Sp 69:117

    Article  Google Scholar 

  • Ludwin RS, Dennis R, Carver D, McMillan AD, Losey R, Clague J, Jonientz-Trisler C, Bowechop J, Wray J, James K (2005) Dating the 1700 Cascadia earthquake: great coastal earthquakes in native stories. Seismol Res Lett 76(2):140–148

    Article  Google Scholar 

  • McCrory PA, Blair JL, Oppenheimer DH, Walter SR (2004) Depth to the Juan de Fuca slab beneath the Cascadia subduction margin: A 3-D model for sorting earthquakes. US Department of the Interior, US Geological Survey

  • McCrory PA, Blair JL, Waldhauser F, Oppenheimer DH (2012) Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity. J Geophys Res: Sol Earth 117:B09306

    Article  Google Scholar 

  • Moeremans R, Singh SC, Mukti M, McArdle J, Johansen K (2014) Seismic images of structural variations along the deformation front of the Andaman–Sumatra subduction zone: implications for rupture propagation and tsunamigenesis. Earth Planet Sci Lett 386:75–85

    Article  Google Scholar 

  • Murotani S, Satake K, Fujii Y (2013) Scaling relations of seismic moment, rupture area, average slip, and asperity size for M ~ 9 subduction-zone earthquakes. Geophys Res Lett 40:5070–5074

    Article  Google Scholar 

  • Noda H, Lapusta N (2013) Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493(7433):518–521

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82(2):1018–1040.

    Google Scholar 

  • Priest GR, Witter RC, Zhang YJ, Wang K, Goldfinger C, Stimely LL, English JT, Pickner, SG, Hughes KLB, Wille TE, Smith RL (2013) Tsunami inundation scenarios for Oregon. Oregon Department of Geology and Mineral Industries, Open-file report 0-13-19

  • Plafker G (1972) Alaskan earthquake of 1964 and Chilean earthquake of 1960: implications for arc tectonics. J Geophys Res 77(5):901–925

    Article  Google Scholar 

  • Priest GR, Goldfinger C, Wang K, Witter RC, Zhang Y, Baptista AM (2009) Tsunami hazard assessment of the Northern Oregon coast: a multi-deterministic approach tested at Cannon Beach, Clatsop County, Oregon. Oregon Department of Geology and Mineral Industries, Special Paper 41

  • Priest GR, Goldfinger C, Wang K, Witter RC, Zhang Y, Baptista AM (2010) Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Nat Hazard 54(1):27–73

    Article  Google Scholar 

  • Priest GR, Zhang Y, Witter RC, Wang K, Goldfinger C, Stimely L (2014) Tsunami impact to Washington and northern Oregon from segment ruptures on the southern Cascadia subduction zone. Nat Hazard 72(2):849–870

    Article  Google Scholar 

  • Royer AA, Bostock MG (2014) A comparative study of low frequency earthquake templates in northern Cascadia. Earth Planet Sci Lett 402:247–256

    Article  Google Scholar 

  • Satake K, Wang K, Atwater BF (2003) Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J Geophys Res: Sol Earth 108:2535

    Article  Google Scholar 

  • Shi F, Kirby JT, Tehranirad B, Harris JC, Choi Y-K, Malej M (2016) FUNWAVE-TVD, Fully Nonlinear Boussinesq Wave Model With TVD solver, documentation and user’s manual. Center Appl. Coastal Res., Univ. Delaware, Newark, DE, USA, Res. Rep. No CACR-11-04

  • Singh SC, Carton H, Tapponnier P, Hananto ND, Chauhan AP, Hartoyo D, Bayly M, Moeljopranoto S, Bunting T, Christie P, Lubis H, Martin J (2008) Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nat Geosci 1(11):777–781

    Article  Google Scholar 

  • Singh SC, Hananto N, Mukti M, Permana H, Djajadihardja Y, Harjono H (2011) Seismic images of the megathrust rupture during the 25th October 2010 Pagai earthquake, SW Sumatra: frontal rupture and large tsunami. Geophys Res Lett 38(16)

    Article  Google Scholar 

  • Spence GD, Hyndman RD, Davis EE, Yorath CJ (1991a) Seismic structure of the northern Cascadia accretionary prism: evidence from new multichannel seismic reflection data. Continental Lithosphere: Deep Seismic Reflections, 257-263

    Chapter  Google Scholar 

  • Spence GD, Hyndman RD, Langton S, Yorath CJ, Davis EE (1991b) Multichannel seismic reflection profiles across the Vancouver Island continental shelf and slope. Geol Surv Can Open File, 2391

  • Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81:941–950

    Article  Google Scholar 

  • Sun T, Wang K (2015) Viscoelastic relaxation following subduction earthquakes and its effects on afterslip determination. J Geophys Res Sol Earth 120(2):1329–1344

    Article  Google Scholar 

  • Sun T, Wang K, Fujiwara T, Kodaira S, He J (2017) Large fault slip peaking at trench in the 2011 Tohoku-oki earthquake. Nat Commun 8:14044

    Article  Google Scholar 

  • Tobin HJ, Webb SI (2017) Evidence for patchy sediment underthrusting and a strong, drained outer accretionary wedge in central Cascadia: implications for dynamic slip conditions. American Geophysical Union Fall Meeting, December 2017, Abstract T43F-07

  • Wang PL (2012) Rupture models of the great 1700 Cascadia earthquake based on microfossil paleoseismic observations. M.Sc. thesis, Univ of Victoria, Victoria, BC, Canada

  • Wang K, He J (2008) Effects of frictional behaviour and geometry of subduction fault on coseismic seafloor deformation. Bull Seismol Soc Am 98(2):571–579

    Article  Google Scholar 

  • Wang K, Hu Y (2006) Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge. J Geophys Res Sol Earth 111:B06410

    Google Scholar 

  • Wang K, Tréhu AM (2016) Invited review paper: some outstanding issues in the study of great megathrust earthquakes—The Cascadia example. J Geodyn 98:1–18

    Article  Google Scholar 

  • Wang K, Wells R, Mazzotti S, Hyndman RD, Sagiya T (2003) A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J Geophys Res Sol Earth 108:2026

    Google Scholar 

  • Wang PL, Engelhart SE, Wang K, Hawkes AD, Horton BP, Nelson AR, Witter RC (2013) Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates. J Geophys Res Sol Earth 118(5):2460–2473

    Article  Google Scholar 

  • Wang K, Sun T, Brown L, Hino R, Tomita M, Kido M, Iinuma T, Kodaira S, Fujiwara T (2018) Learning from crustal deformation associated with the M9 2011 Tohoku-oki earthquake. Geosphere. https://doi.org/10.1130/GES01531.1

    Article  Google Scholar 

  • Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J Fluid Mech 294:71–92

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wells RE, Simpson RW (2001) Northward migration of the Cascadia forearc inthe northwestern U.S. and implications for subduction deformation. Earth Planet Sp 53:275–283

    Article  Google Scholar 

  • Wendt J, Oglesby DD, Geist EL (2009) Tsunamis and splay fault dynamics. Geophys Res Lett. https://doi.org/10.1029/2009GL038295

    Article  Google Scholar 

  • Witter RC, Zhang Y, Wang K, Priest GR, Goldfinger C, Stimely LL, English JT, Ferro PA (2011) Simulating tsunami inundation at Bandon, Coos County, Oregon, using hypothetical Cascadia and Alaska earthquake scenarios. Oregon Department of Geology and Mineral Industries Special Paper 43

  • Witter RC, Zhang Y, Wang K, Goldfinger C, Priest GR, Allan JC (2012) Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake and earthquake triggered marine turbidites. J Geophys Res: Sol Earth 117:B10303

    Article  Google Scholar 

  • Witter RC, Zhang YJ, Wang K, Priest GR, Goldfinger C, Stimely L, English JT, Ferro PA (2013) Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon. USA. Geosphere 9(6):1783–1803

    Article  Google Scholar 

  • Yorath CJ, Clowes RM, MacDonald RD, Spencer C, Davis EE, Hyndman RD, Rohr K, Sweeny JF, Currie RG, Halpen JF, Halpenny JF, Seemann DA (1987) Marine multichannel seismic reflection, gravity and magnetic profiles: Vancouver Island continental margin and Juan de Fuca ridge. Geological Survey of Canada, Open file, 1661

  • Yuan T, Spence GD, Hyndman RD (1994) Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia margin. J Geophys Res Sol Earth 99(B3):4413–4427

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Rohr for assistance in interpreting seismic records for the identification of secondary faults shown in Fig. 10, S. Grilli and A. Grilli for help in wave propagation modelling, two anonymous reviewers for insightful comments, and Westgrid and compute Canada, in particular Dr. Belaid Moa, for their technical support on cloud and cluster computing. D. G., T. S., and M. S. were supported by a Natural Sciences and Engineering Council Canada (NSERC) Collaborative Research Grant (CRDPJ 492525-15) to K. W. and others for research collaboration with Ocean Networks Canada and IBM Canada and by an NSERC Discovery Grant to K. W. This is Geological Survey of Canada contribution 20180073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Wang, K., Insua, T.L. et al. Defining megathrust tsunami source scenarios for northernmost Cascadia. Nat Hazards 94, 445–469 (2018). https://doi.org/10.1007/s11069-018-3397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-018-3397-6

Keywords

Navigation