Skip to main content
Log in

Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Sinapine is the most prominent antinutritive compound in the seeds of oilseed rape (Brassica napus L.). A reduction in sinapine content could improve the quality of rapeseed meal as an animal feed and in food industry. We had selected loss-of-function mutations of two sinapine biosynthesis genes BnSGT and BnREF1 and crossed them to produce double mutants. We measured their expression and enzyme activities in developing seeds as well as sinapoyl ester accumulation in mature seeds in three segregating F2 populations. Significant depletion of SGT enzyme activity in developing seeds proved loss of function of both gene copies and ruled out background effects. REF1 enzyme activities showed minor reductions and pointed at different substrate specificities of the paralogs and the presence of unspecific aldehyde dehydrogenases. Sinapine contents in the double mutants dropped dramatically by up to 71 %. F3 seeds with two stop-codon mutations in BnREF1 genes had the lowest sinapine contents (2.4 mg/g) as compared to the EMS control (7.5 mg/g). A BnREF1 splice site mutation did not result in a decrease in seed sinapine content probably due to incomplete splicing. We demonstrate that only the combination of different knockdown mutations drastically alters the composition of a major secondary metabolite. The results cast new light on the activities of gene paralogs in a polyploid species. The selected double mutants will be of major importance to further improve the quality of rapeseed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    Article  PubMed Central  PubMed  Google Scholar 

  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D (2005) Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry 66:1334–1345

    Article  CAS  PubMed  Google Scholar 

  • Bhinu VS, Schäfer U, Li R, Huang J, Hannoufa A (2009) Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Res 18:31–44

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang YF, Imam JS, Wilkinson ME (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74

    Article  CAS  PubMed  Google Scholar 

  • Clauß K, von Roepenack-Lahaye E, Böttcher C, Roth MR, Welti R, Erban A, Kopka J, Scheel D, Milkowski C, Strack D (2011) Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. Plant Physiol 155:1127–1145

    Article  PubMed Central  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence: a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Gadjieva R, Axelsson E, Olsson U, Vallon-Christersson J, Hansson M (2004) Nonsense-mediated mRNA decay in barley mutants allows the cloning of mutated genes by a microarray approach. Plant Physiol Biochem 42:681–685

    Article  CAS  PubMed  Google Scholar 

  • Harloff HJ, Wegmann K (1993) Evidence for a mannitol cycle in Orobanche ramosa and Orobanche crenata. J Plant Physiol 141:513–520

    Article  CAS  Google Scholar 

  • Harloff HJ, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C (2012) A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124:957–969

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. Mitochondr DNA 5:41–49

    Article  CAS  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Article  Google Scholar 

  • Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J 15:133–138

    Article  CAS  PubMed  Google Scholar 

  • Isshiki M, Yamamoto Y, Satoh H, Shimamoto K (2001) Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiol 125:1388–1395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jofuku KD, Schipper RD, Goldberg RB (1989) A frameshift mutation prevents Kunitz trypsin inhibitor mRNA accumulation in soybean embryos. Plant Cell 1:427–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jordan T, Schornack S, Lahaye T (2002) Alternative splicing of transcripts encoding Toll-like plant resistance proteins—what’s the functional relevance to innate immunity? Trends Plant Sci 7:392–398

    Article  CAS  PubMed  Google Scholar 

  • Kusumi J, Iba K (1998) Characterization of a nonsense mutation in FAD7, the gene which encodes ω-3 desaturase in Arabidopsis thaliana. J Plant Res 111:87–91

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( 2^{{ - \Delta \Delta C_{\text{t}} }} \) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C (2002) Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14:877–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maple J, Møller S (2007) Mutagenesis in Arabidopsis. In: Rosato E (ed) Methods in molecular biology, vol 362., Circadian rhythmsHumana Press, Totowa, pp 197–206

    Google Scholar 

  • Marchitti SA, Brocker C, Stagos D, Vasiliou V (2008) Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Met 4:697–720

    Article  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milkowski C, Baumert A, Schmidt D, Nehlin L, Strack D (2004) Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Plant J 38:80–92

    Article  CAS  PubMed  Google Scholar 

  • Mittasch J, Mikolajewski S, Breuer F, Strack D, Milkowski C (2010) Genomic microstructure and differential expression of the genes encoding UDP-glucose:sinapate glucosyltransferase (UGT84A9) in oilseed rape (Brassica napus). Theor Appl Genet 120:1485–1500

    Article  CAS  PubMed  Google Scholar 

  • Mittasch J, Böttcher C, Frolov A, Strack D, Milkowski C (2013) Reprogramming the phenylpropanoid metabolism in seeds of Brassica napus by suppressing the orthologs of REDUCED EPIDERMAL FLUORESCENCE1. Plant Physiol 161:1656–1669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome-analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Jpn J Bot 7:369–452

    Google Scholar 

  • Nagel F, Slawski H, Adem H, Tressel RP, Wysujack K, Schulz C (2012) Albumin and globulin rapeseed protein fractions as fish meal alternative in diets fed to rainbow trout (Oncorhynchus mykiss W.). Aquaculture 354:121–127

    Article  Google Scholar 

  • Nair RB, Joy RWI, Kurylo E, Shi X, Schnaider J, Datla RSS, Keller WA, Selvaraj G (2000) Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant Physiol 123:1623–1634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. Sci Signal 22:3142

    CAS  Google Scholar 

  • Saito M, Nakamura T (2005) Two point mutations identified in emmer wheat generate null Wx-A1 alleles. Theor Appl Genet 110:276–282

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. J Am Oil Chem Soc 69:917–924

    Article  CAS  Google Scholar 

  • Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Ostergaard L (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10:62

    Article  PubMed Central  PubMed  Google Scholar 

  • van Hoof A, Green PJ (2006) NMD in plants. In: Maquat L (ed) Nonsense-mediated mRNA decay. Landes Biosci, New York, pp 167–172

    Google Scholar 

  • Veitia RA (2004) Gene dosage balance in cellular circuits and pathways: implications for dominance and gene duplicability. Genetics 168:569–574

    Article  PubMed Central  PubMed  Google Scholar 

  • Voelker TA, Staswick P, Chrispeels MJ (1986) Molecular analysis of two phytohemagglutinin genes and their expression in Phaseolus vulgaris cv. Pinto, a lectin-deficient cultivar of the bean. EMBO J 5:3075

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voelker TA, Moreno J, Chrispeels MJ (1990) Expression analysis of a pseudogene in transgenic tobacco: a frameshift mutation prevents mRNA accumulation. Plant Cell 2:255–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang JLY, Wu B, Liu J, Jiang C, Shi L, Zhao J, King G, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:271

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W, Strack D (2010) Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry 71:1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Zhang XC, Gassmann W (2003) RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15:2333–2342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zum Felde T, Baumert A, Strack D, Becker HC, Moellers C (2007) Genetic variation for sinapate ester content in winter rapeseed (Brassica napus L.) and development of NIRS calibration equations. Plant Breeding 126:291–296

    Article  Google Scholar 

Download references

Acknowledgments

We thank Gislind Bräcker and Monika Bruisch for technical assistance in the laboratory and in the greenhouse, and Prof. Dr. Wolfgang Bilger and Jens Hermann from the Institute of Botany, University of Kiel for performing HPLC analyses. We thank the Zentrum für Molekulare Biowissenschaften (ZBM), University of Kiel for providing the facilities for DNA isolation and normalization. We are also grateful to the Institute for Clinical Molecular Biology, University Kiel for Sanger sequencing. This project was funded by the seed companies Norddeutsche Pflanzenzucht Hans-Georg Lembke KG (Hohenlieth, Germany), Deutsche Saatveredelung AG (Lippstadt, Germany), KWS SAAT AG (Einbeck, Germany), the German Federal Ministry for Education, Research and Technology BMBF (GABI Future Grant No. 0315052C), and the German Research foundation (DFG) Grant No. Ju205/14-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Harloff.

Additional information

Nazgol Emrani and Hans-Joachim Harloff have contributed equally to this work.

Accession numbers: BnaA.SGT.a (FM872285), BnaC.SGT.a (FM872284), BnaC.REF1.a (FN995990), and BnaA.REF1.a (FN995991).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emrani, N., Harloff, HJ., Gudi, O. et al. Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes. Mol Breeding 35, 37 (2015). https://doi.org/10.1007/s11032-015-0236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0236-2

Keywords

Navigation