Skip to main content

Advertisement

Log in

The distribution and characteristics of the igneous complexes in the northern East China Sea Shelf Basin and their implications for hydrocarbon potential

  • Original Research Paper
  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

This paper presents results of two-dimensional seismic mapping of the northern East China Sea Shelf Basin. Various igneous features such as sills, volcanic edifices and stocks were identified by the geophysical exploration. The sills are most common, and are observed at more than 90 locations. Most mapped sills in the study area are characterized by high-amplitude continuous reflections with distinct terminations. Saucer- and cup-shaped sills are observed locally. The stocks are discordant (nearly vertical) igneous bodies and they are characterized by seismic transparency, with upturned host rocks and uplifted overburden. The volcanic edifices and/or necks consist of irregular mounds and peaks and are characterized by strong positive top reflections with chaotic internal facies. The oldest igneous activity in the northern East China Sea Shelf Basin is Early Cretaceous (123.3 ± 3.7). This igneous activity coincides with those observed in eastern China which has been related mainly to the subduction of the Pacific Plate beneath Eurasia Plate. The Miocene igneous activity is well constrained based on seismic stratigraphic relationships within the folded stratigraphy, age dating, and the occurrence of igneous sills. The timing of this intrusion is coincident with the intensive igneous activity as previously suggested for the eastern China. Igneous rocks can produce hydrocarbon traps, reservoirs and they can act as a seal, and therefore are of great importance in petroleum study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aguilera R (1995) Naturally fractured reservoirs, 2nd edn. Pennwell, Tulsa

    Google Scholar 

  • Archer SG, Bergman SC, Iliffe J, Murphy CM, Thornton M (2005) Palaeogene igneous rocks reveal new insights into the geodynamic evolution and petroleum potential of Rockall Trough, NE Atlantic Margin. Basin Res 17:171–201

    Article  Google Scholar 

  • Baag C, Baag CE (1998) Aeromagnetic interpretation of southwestern continental shelf of Korea. In: Gibson RI, Millegan PS (eds) Geologic applications of gravity and magnetics: case histories. Society of Exploration Geophysicists Geophysical References Series 8, pp 63–68

  • Badley ME (1985) Practical seismic interpretation. IHRC, Boston, 266 pp

    Google Scholar 

  • Barry TL, Kent RW (1998) Cenozoic magmatism in Mongolia and the origin of central and East Asia basalts. In: Flower M, Chung SL, Lo CH (eds) Mantle dynamics and plate interactions in East Asia. Am Geophys Un Geodyn Series 27, pp 347–364

  • Bubb JN, Hatlelid WG (1977) Seismic stratigraphy and global changes of sea level; Part 6, seismic recognition of carbonate buildups. In: Payton CE (ed) Seismic stratigraphy applications to hydrocarbon exploration. Am Assoc Pet Geol Mem 27, pp 185–204

  • Cao YC, Jiang ZX, Qiu LW (1999) Study on the type and origin of the reservoir space of igneous oil reservoir in Shang 741 block, Huimin depression, Shandong (in Chinese with English abstract). Acta Pet Sin 15(1):129–136

    Google Scholar 

  • Cartwright J, Huuse M, Aplin A (2007) Seal bypass systems. Am Assoc Pet Geol 91:1141–1166

    Google Scholar 

  • Chough SK, Lee HJ, Yoon SH (2000) Marine geology of Korean Seas. Elsevier, Amsterdam, 313 pp

    Google Scholar 

  • Clift PD (1999) The thermal impact of Paleocene magmatic underplating in the Faeroe-Shetland-Rockall region. In: Fleet AJ, Boldy SAR (eds) Petroleum geology of Northwest Europe: Proceedings of the 5th conference. Geol Soc, London, pp 585–593

  • Cukur D (2010) Structure, stratigraphy and petroleum potential of the northern East China Sea shelf basin. PhD thesis, Pukyong National University, Busan, 185 pp

  • Dailly GG (1976) A possible mechanism relating progradation, growth faulting, clay diapirism and overthrusting in a regressive sequence sediments. Can Pet Geol Bull 24:92–116

    Google Scholar 

  • Davies R, Bell BR, Cartwright JA, Shoulders S (2002) Three-dimensional seismic imaging of Paleogene dike-fed submarine volcanoes from the northeast Atlantic margin. Geology 30:223–226

    Article  Google Scholar 

  • Fedorov PI, Koloskov AV (2005) Cenozoic volcanism of Southeast Asia. Petrology 13:389–420

    Google Scholar 

  • George SC (1992) Effect of igneous intrusion on the organic geochemistry of a siltstone and an oil shale horizon in the Midland Valley of Scotland. Org Geochem 18:705–724

    Article  Google Scholar 

  • Gerdes K, Labarbarie M, Tveiten B (1988) Basin analysis and prospectivity of the East China Sea Area. British Petroleum (BP) Report, London, 75 pp

  • Gu LX, Ren ZW, Wu CZ, Zhao M, Qiu J (2002) Subvolcanic trachyte porphyry at Oulituozi in the Liaohe basin and its mechanism for hydrocarbon reservoir formation. Am Assoc Pet Geol Bull 86:1821–1832

    Google Scholar 

  • Hansen DM, Cartwright JA (2006) Saucer-shaped sill with lobate morphology revealed by 3D seismic data: implications for resolving a shallow-level sill emplacement mechanism. J Geol Soc Lond 163:509–523

    Article  Google Scholar 

  • Hansen DM, Cartwright JA, Thomas D (2004) 3D seismic analysis of the geometry of igneous sills and sill junctions relationships. In: Davies RJ, Cartwright JA, Stewart SA, Lappin M, Underhill JR (eds) 3D seismic technology: application to the exploration of sedimentary basins 29. Geol Soc, London, pp 199–208

    Google Scholar 

  • Hansen DM, Redfern J, Federici F, di Biase D, Bertozzi G (2008) Miocene igneous activity in the Northerb Subbasin, offshore Senegal, NW Africa. Mar Pet Geol 25:1–15

    Article  Google Scholar 

  • Hsu SK, Sibuet JC, Shyu CT (2001) Magnetic inversion in the East China Sea and Okinawa Trough: tectonic implications. Tectonophysics 333:111–122

    Article  Google Scholar 

  • Hu ZP, Guan LP, Gu LX, Wang LS, Wu DL, Dong YR, Zhao Q (2004) Wide angle seismic wave field analysis and imaging method below the high velocity shield layers. Chin J Geophys 47:88–94

    Google Scholar 

  • Huifen W, Xuechang Y, Bingquan Z, Sikun F, Tongmo D (1989) K-Ar geochronology and evolution of Cenozoic Volcanic Rocks in Eastern China. Chin J Geochem 8:1–14

    Article  Google Scholar 

  • Huuse M, Mickelson M (2004) Eocene sandstone intrusions in the Tampen Spur area (Norwegian North Sea QUAD 34) imaged by 3D seismic data. Mar Pet Geol 21:141–155

    Article  Google Scholar 

  • Jackon MPA, Galloway WE (1986) Structural and depositional styles of Gulf Coast tertiary continental margins: application to hydrocarbon exploration. Am Assoc Pet Geol, Continuing Education Course Note Series 25, pp 1–225

  • Jaeger JC (1964) Thermal effects of intrusions. Rev Geophys 2:443–466

    Article  Google Scholar 

  • Jenyon MK (1986) Salt tectonics. Elsevier, London, 191 pp

    Google Scholar 

  • KIGAM (1991) Geology, stratigraphy and paleontology of Korean continental shelf area: Block II, Block IV, Block V, Block VI and JDZ. Korea Institute of Geoscience and Mineral Resources Report 91-5B-1, 86 pp (in Korean with English abstract)

  • KIGAM (1997) Hydrocarbon potential of the northern East China Shelf Basin I. Korea Institute of Geoscience and Mineral Resources Report KR 97(C)-17, 297 pp (in Korean with English abstract)

  • Kimura JI, Stern RJ, Yoshida T (2005) Reinitiation of subduction and magmatic responses in SW Japan during Neogene time. Geol Soc Am 117:969–986

    Article  Google Scholar 

  • Kwon YI, Boggs S Jr (2002) Provenance interpretation of Tertiary sandstones from the Jeju Basin (NE East China Sea): a comparison of conventional petrographic and scanning cathodoluminescence techniques. Sed Geol 152:29–43

    Article  Google Scholar 

  • Lee GH, Kim B, Shin KS, Sunwoo D (2006a) Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin. Am Assoc Pet Geol 90:237–260

    Google Scholar 

  • Lee GH, Kwon YI, Yoon CS, Kim HJ, Yoo HS (2006b) Igneous complexes in the eastern Northern South Yellow Sea Basin and their implications for hydrocarbon systems. Mar Pet Geol 23(6):631–645

    Article  Google Scholar 

  • Letouzey J, Kimura M (1986) The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics 125:209–230

    Article  Google Scholar 

  • Li C, Kang RH (1999) Genetic types of reservoir spaces of igneous rocks in the Luo 151 block, Jiyang sag (in Chinese with English abstract). Geol Rev 45:599–604

    Google Scholar 

  • Liang R, Pei Y, Zheng Y, Wei J, Liu Y (2003) Gravity and magnetic field and tectonic structure character in the southern Yellow Sea. Chin Sci Bull 48:64–73

    Article  Google Scholar 

  • Lin JY, Sibuet JC, Hsu SK (2005) Distribution of the East China Sea continental shelf basins and depths of magnetic sources. Earth Planets Space 57:1063–1072

    Google Scholar 

  • Liu M, Cui X, Liu F (2004a) Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision. Tectonophysics 393:29–42

    Article  Google Scholar 

  • Liu YS, Gao S, Yuan HL, Zhou L, Liu XM, Wang XC, Hu ZC, Wang LS (2004b) U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem Geol 211:87–109

    Article  Google Scholar 

  • Luo JL, Qv ZH, Sun W, Shi FZ (1996) The relations between lithofacies, reservoir lithology and oil and gas of volcanic rocks in Fenghuadian area (in Chinese with English abstract). Acta Pet Sin 17(1):32–39

    Google Scholar 

  • Malthe-Sørenssen A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems 234. Geol Soc, London, pp 215–227

    Google Scholar 

  • Masters JA (2000) The slow discovery of Dineh-bi-Keyah. Mountain Geol 37:91–100

    Google Scholar 

  • Miles A, Cartwright J (2010) Hybrid flow sills: a new mode of igneous sheet intrusion. Geology 38:343–346

    Article  Google Scholar 

  • Monreal FR, Villar HJ, Baudino R, Delpino D, Zencich S (2009) Modeling an atypical petroleum system: a case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argentina. Mar Pet Geol 26(4):590–605

    Article  Google Scholar 

  • Nelson RA (2001) Geologic analysis of naturally fractured reservoirs. Gulf Publishing Company, Largo, 332 pp

    Google Scholar 

  • Niu Y (2005) Generation and evolution of basaltic magmas: some basic concepts and a new vie on the origin of Mesozoic–Cenozoic basaltic volcanism in eastern China. Geol J China Uni 11:9–46

    Google Scholar 

  • Oreiro SG, Cupertino JA, Szatmari P, Filho AT (2008) Influence of pre-salt alignments in post-Aptian magmatism in the Cabo Frio High and its surroundings, Santos and Campos basins, SE Brazil: an example of non-plume-related magmatism. J South Am Earth Sci 25:116–131

    Article  Google Scholar 

  • Planke S, Symonds P, Alvestad E, Skogseid J (2000) Seismic large volcanostratigrpahy of large-volume basaltic extrusive complexes on rifted basins. J Geophys Res 105(19):19,335–19351

    Google Scholar 

  • Planke S, Rasmussen T, Rey SS, Myklebust R (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: Doré AG, Vining BA (eds) Petroleum geology: Northwest Europe and global perspectives. Geol Soc, London, pp 833–844

    Chapter  Google Scholar 

  • Ray RR (1989) Seismic expressions of igneous sills in San Juan Sag, south central Colorado. Am Assoc Pet Geol Bull 73:1159

    Google Scholar 

  • Ren J, Tamaki K, Li S, Zhang J (2002) Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent seas. Tectonophysics 344:175–205

    Article  Google Scholar 

  • Rocchi S, Mazzotti A, Marroni M, Pandolfi L, Costantini P, Giuseppe B, Biase Dd, Federici F, Lo PG (2007) Detection of Miocene saucer-shaped sills (offshore Senegal) via integrated interpretation of seismic, magnetic and gravity data. Terra Nova 19:232–239

    Article  Google Scholar 

  • Rohrman M (2007) Prospectivity of volcanic basins: trap delineation and acreage de-risking. Am Assoc Pet Geol Bull 91(6):915–939. doi:10.1306/12150606017

    Google Scholar 

  • Sausse J (2002) Hydromechanical properties and alteration of natural fracture surfaces in the Soultz granite (Bas-Rhin, France). Tectonophysics 348:169–185

    Article  Google Scholar 

  • Schutter SR (2003a) Hydrocarbon occurrence and exploration in and around igneous rocks. In: Petford N, McCaffrey KJW (eds) Hydrocarbons in crystalline rocks. Geol Soc Spec Publ 214, pp 7–33

  • Schutter SR (2003b) Occurrences of hydrocarbons in and around igneous rocks. In: Petford N, McCaffrey KJW (eds) Hydrocarbons in crystalline rocks. Geol Soc Spec Publ 214, pp 35–68

  • Shi YL, Zhang J (2004) Deep geodynamics of far field intercontinental back-arc extension: formation of Cenozoic volcanoes in Northeastern China. Acta Seismol Sin 17 (Suppl. 1–8)

    Google Scholar 

  • Shoulders SJ, Cartwright J, Huuse M (2007) Large-scale conical sandstone intrusions and polygonal fault systems in Tranche 6, Faroe-Shetland Basin. Mar Pet Geol 24:173–188

    Article  Google Scholar 

  • Sibuet JC, Hsu SK (2004) How was Taiwan created? Tectonophysics 379:159–181

    Article  Google Scholar 

  • Sibuet JC, Letouzey J, Barbier F, Charvet J, Foucher JP, Hilde TWC, Kimura M, Ling-Yun C, Marsett B, Muller C, Stephan JF (1987) Back arc extension in the Okinawa Trough. J Geophys Res 92:14041–14063

    Article  Google Scholar 

  • Sircar A (2004) Hydrocarbon production from fractured basement formations. Curr Sci 87:147–151

    Google Scholar 

  • Smallwood JR, Maresh J (2002) The properties, morphology and distribution of igneous sills. In: Jolley DW, Bell BR (eds) The North Atlantic igneous province: stratigraphy, tectonic, volcanic and magmatic processes. Geol Soc Lond Spec Publ 197, pp 271–306

  • Stagpoole V, Funnell R (2001) Arc magmatism and hydrocarbon generation in the northern Taranaki Basin, New Zealand. Petrol Geosci 7:257–265

    Article  Google Scholar 

  • Sun SC (1981) The tertiary basins of off-shore Taiwan. In: Proceedings of 2nd ASCOPE conference, Manila, pp 125–135

  • Sun W, Ding X, Hu YH, Li XH (2007) The golden transformation of the cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett 262:533–542

    Article  Google Scholar 

  • Symond PA, Planke S, Frey Ø, Skogseid J (1998) Volcanic development of the western Australian continental margin and its implications for basin development. In: Purcell PG, Purcell RR (eds) The sedimentary basins of Western Australia 2: Proceedings of petroleum exploration society of Australia symposium, Perth, pp 33–54

  • Thomson K, Hutton D (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull Volcano 66:364–375

    Article  Google Scholar 

  • Thrasher GP, Leitner B, Hart AW (2002) Petroleum system of the Northern Taranaki Graben. In: 2002 New Zealand petroleum conference proceedings: 1–6. Ministry of Economic Development, Wellington

  • Trude J, Cartwright J, Davis RJ, Smallwood J (2003) New technique for dating igneous sills. Geology 31:816–831

    Article  Google Scholar 

  • Wang LG, Qiu YM, McNaughton NJ, Groves DI, Luo ZK, Huang JZ, Miao LC, Liu YK (1998) Constraints on crustalevolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U–Pb zircon studies of granitoids. Ore Geol Rev 13:275–291

    Article  Google Scholar 

  • Wang XK, Qiu SW, Song CC, Kulakov A, Tashchi S, Myasnikov E (2001) Cenozoic volcanism and geothermal resources in northeast China. Chin Geograph Sci 11:150–154

    Article  Google Scholar 

  • Wu FY, Lin JQ, Wilde SA, Zhang XO, Yang JH (2005) Nature and significance of the early cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233:103–119

    Article  Google Scholar 

  • Wu C, Gu L, Zhang Z, Ren Z, Chen Z, Li W (2006) Formation mechanisms of hydrocarbon reservoirs associated with volcanic and subvolcanic intrusive rocks: examples in Mesozoic-Cenozoic basins of eastern China. Am Assoc Pet Geol Bull 9(1):137–147

    Google Scholar 

  • Yang QL (1992) Geotectonic framework of the East China Sea. In: Watkins JS, Zhiqiang FK, McMillen J (eds) Geology and geophysics of continental margins. Am Assoc Pet Geol Mem (53), pp 17–25

  • Yang S, Hu S, Cai D, Feng X, Chen L, Gao L (2004) Present-day heat flow, thermal history and tectonic subsidence of the East China Sea Basin. Mar Pet Geol 21:1095–1105

    Article  Google Scholar 

  • Yun H, Yi S, Yi S, Kim JK, Byun HS, Kim GH, Park DB (1999) Biostratigraphy and paleoenvironment of the Cheju sedimentary basin-based on materials from explorations, Geobuk-1 and Okdom-1. J Paleont Soc Korea 15:43–94

    Google Scholar 

  • Zhang YH, Zhu LM, Wu XZ, Yuan XJ (2000) The lithofacies and reservoir model of intrusive rock and its exomorphic zones (in Chinese with English abstract). Pet Explor Dev 27:22–26

    Google Scholar 

  • Zhang YQ, Dong SW, Shi W (2003) Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China. Tectonophysics 363:243–258

    Article  Google Scholar 

  • Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH, Liu XM (2008) Large-scale early cretaceous volcanic events in the northern Great Xing an Range, Northeastern China. Lithos 102:138–157

    Article  Google Scholar 

  • Zhou Z, Zhao J, Yin P (1989) Characteristics and tectonic evolution of the East China Sea. In: Zhu X (ed) Chinese sedimentary basins: sedimentary basins of the world 1. Amsterdam, Elsevier, pp 165–179

    Google Scholar 

  • Zhu G, Song CZ, Wang DX, Liu GS, Xu JW (2001) Studies on 40Ar/39Ar thermochronology of strike-slip time of the Tan-Lu fault zone and their tectonic implications. Sci China 44:1002–1009

    Article  Google Scholar 

  • Zhu D, Jin Z, Hu W, Song Y, Gao X (2007) Effect of igneous activity on hydrocarbon source rocks in Jiyang sub-basin, eastern China. J Pet Sci Eng 59:309–320

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Korea National Oil Corporation (KNOC) and Korea Institute of Geoscience and Mineral Resources (KIGAM) for permission to publish the data. Peter Clift and two anonymous reviewers are thanked for their very thoughtful and constructive suggestions that helped improve the manuscript. This study was supported by a grant (10-9110) from MLTM Research Fund. Kingdom Suite® (version 8.2) was used for seismic data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Cukur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cukur, D., Horozal, S., Kim, D.C. et al. The distribution and characteristics of the igneous complexes in the northern East China Sea Shelf Basin and their implications for hydrocarbon potential. Mar Geophys Res 31, 299–313 (2010). https://doi.org/10.1007/s11001-010-9112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-010-9112-y

Keywords

Navigation