Skip to main content

Advertisement

Log in

Acquisition and Inversion of Dispersive Seismic Waves in Shallow Marine Environments

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Two types of dispersive seismic waves have been acquired in different geological settings to investigate the potential to reveal the elastic parameters of the shallow marine subsurface. Scholte waves as well as acoustic guided waves are excited by a near-surface towed airgun, and recorded using two acquisition methods: (1) the towed-acquisition system using a hydrophone streamer towed close to the sea floor, and (2) the stationary-receiver method using Ocean-Bottom Seismometers and/or Hydrophones (OBS/OBH). Our diverse data sets reveal that the spatial sampling of the wavefield required to avoid aliasing may vary significantly for different geological settings. Scholte waves are characterised by a few distinct modes observed at low frequencies and low phase velocities. Their dispersion is mainly controlled by the depth profile of the shear-wave velocity. Acoustic guided waves show profound amplitude variations of numerous higher modes over a broad frequency range. These are sensitive to shear-wave velocity, but more sensitive to compressional-wave velocity than Scholte waves are. To avoid the identification of distinct modes we infer 1-D models of elastic parameters of the subsurface from the inversion of the full wavefield spectra of acoustic guided waves. In the Siberian Laptev Sea we infer the presence of a soft sediment layer (8–10 m) with a well resolved strong S-velocity gradient (150–450 m/s). In the Baltic Sea a low P-velocity layer with a strong vertical gradient (1250–1440 m/s) corresponding to a post-glacial gassy mud layer could be resolved, which agrees well with the sediment stratigraphy derived from a gravity core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Ayres F. Theilen (1999) ArticleTitleRelationship between P- and S-wave velocities and geological properties of near-surface sediments of the continental slope of the Barents Sea Geophys. Prosp. 47 IssueID4 431–441

    Google Scholar 

  • T. Bohlen S. Kugler G. Klein F. Theilen (2004) ArticleTitle1.5-D Inversion of lateral variation of Scholte Wave dispersion Geophysics 69 IssueID2 330–344 Occurrence Handle10.1190/1.1707052

    Article  Google Scholar 

  • A.M. Davis D.G. Huws R. Haynes (1996) ArticleTitleGeophysical ground-truthing experiments in Eckernförde Bay Geo-Mar. Lett. 16 IssueID3 160–166

    Google Scholar 

  • G. Delisle (1998) ArticleTitleTemporal variability of subsea Permafrost and gas hydrate occurrences as function of climate change in the Laptev Sea, Siberia Polarforschung 68 221–225

    Google Scholar 

  • A. Dziewonski S. Block M. Landisman (1969) ArticleTitleA technique for analysis of transient seismic signals Bull. Seism. Soc. Am. 59 427–444

    Google Scholar 

  • T. Forbriger (2003a) ArticleTitleInversion of shallow-seismic wavefields. Part 1: Wavefield transformation Geophys. J. Int. 153 IssueID3 719–734

    Google Scholar 

  • T. Forbriger (2003b) ArticleTitleInversion of shallow-seismic wavefields. Part 2: Inferrring subsurface properties from wavefield transforms Geophys. J. Int. 153 IssueID3 735–752

    Google Scholar 

  • D. Franke K. Hinz O. Oncken (2001) ArticleTitleThe Laptev Sea Rift Mar. Petrol. Geol. 18 1083–1127 Occurrence Handle10.1016/S0264-8172(01)00041-1

    Article  Google Scholar 

  • W. Friederich J. Dalkolmo (1995) ArticleTitleComplete synthetic seismograms for a spherically symmetric earth by a numerical computation of Green’s function in the frequency domain Geophys. J. Int. 122 537–550

    Google Scholar 

  • K. Fuchs G. Müller (1971) ArticleTitleComputation of synthetic seismograms with the reflectivity method and comparison with observations Geophys. J. R. Astron. Soc. 23 IssueID4 417–433

    Google Scholar 

  • P. Gabriels R. Snieder G. Nolet (1987) ArticleTitleIn situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves Geophys. Prosp. 35 187–196

    Google Scholar 

  • Gimpel, P., 1987, Marine flachseismische Untersuchungen in der Kieler Bucht unter besonderer Berücksichtigung von Scherwellenmessungen. Dissertation, University of Kiel.

  • F. Glangeaud J.-L. Mari J.-L. Lacoume J. Mars M. Nardin (1999) ArticleTitleDispersive seismic waves in geophysics Eur. J. Environ. Eng. Geophys. 3 265–306

    Google Scholar 

  • Hinz, K. and Delisle, G., 1997, Cruise Report – Marine Seismic Measurements and Geoscientific Studies on the Shelf and Slope of the Laptev Sea and East Siberian Sea/Arctic. Bundesanstalt für Geowissenschaften und Rohstoffe – Bericht.

  • Klein, G., 2003, Acquisition and Inversion of Dispersive Seismic Waves in Shallow Marine Environments. Dissertation, University of Kiel.

  • W. Lemke (1998) Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkona Becken) vom Ende der Weichselvereisung bis zu Litorinatransgression Marine Science Reports 31, Institut für Ostseeforschung Warnemünde

    Google Scholar 

  • B. Luke K. Stokoe (1998) ArticleTitleApplication of SASW method underwater J. Geotech. Geoenviron. Eng. 124 IssueID6 523–531

    Google Scholar 

  • G. McMechan M. Yedlin (1981) ArticleTitleAnalysis of dispersive waves by wave field transformation Geophysics 46 IssueID6 869–874 Occurrence Handle10.1190/1.1441225

    Article  Google Scholar 

  • M. Moros W. Lemke A. Kuijpers R. Endler J. Jensen O. Bennike F. Gingele (2002) ArticleTitleRegressions and transgressions of the Baltic basin reflected by a new high-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea) Boreas 31 IssueID2 151–162 Occurrence Handle10.1080/030094802320129953

    Article  Google Scholar 

  • Müller, C., 2005, The marine VHR 2.5-D seismic brute stack cube as a feasible tool for low budget investigation and research. In: Subsurface Imaging and Sediment Characterization in Shallow Water Environments, Special Publication of Marine Geophysical Researches (MARI). this volume.

  • Muyzert, E., 2000, Scholte wave velocity inversion for a near surface S-velocity model and PS-statics. In: Ann. Int. Mtg. Soc. Expl. Geophys, Expl. Abstr.., pp. 1197–1200.

  • S. Nazarian (1984) In situ determination of elastic moduli of soil deposits and pavement systems by spectral-analysis-of-surface-waves method University of Texas Austin, USA

    Google Scholar 

  • S. Nazarian K. Stokoe (1984) ArticleTitleIn situ shear wave velocities from spectral analysis of surface waves Soil Stability, Soil Structure Interaction and Foundations 8 31–38

    Google Scholar 

  • G. Nolet (1977) ArticleTitleThe upper mantle under Western Europe inferred from the dispersion of Rayleigh modes J. Geophys. 43 IssueID1-2 265–285

    Google Scholar 

  • Park, C., Miller, R., Xia, J., Ivanov, J., Hunter, J., Good, R. and Burns, R., 2000, Multichannel analysis of underwater surface waves near Vancouver, B.C., Canada. In: Ann. Int. Mtg. Soc. Expl. Geophys., Exp. Abstr., pp. 1303–1306.

  • C.B. Park R.D. Miller J. Xia (1999) ArticleTitleMultichannel analysis of surface waves Geophysics 64 IssueID3 800–808 Occurrence Handle10.1190/1.1444590

    Article  Google Scholar 

  • F. Press W. Ewing (1952) ArticleTitleSurface waves and mantle structure Geol. Soc. Am. Bull. 63 Part 2 IssueID12 1356

    Google Scholar 

  • Rauch, D., 1980, Experimental and theoretical studies of seismic interface waves in coastal waters, in Kuperman, W. and Jensen F. (eds.), Bottom-Interacting Ocean Acoustics, Vol. 5, NATO Conf. Ser. 4, pp. 307–326.

  • M. Riedel F. Theilen (2001) ArticleTitleAVO investigations of shallow marine sediments Geophys. Prosp. 49 IssueID2 198–212

    Google Scholar 

  • M. Ritzwoller A. Levshin (2002) ArticleTitleEstimating shallow shear velocities with marine multi-component seismic data Geophysics 67 IssueID6 1991–2004 Occurrence Handle10.1190/1.1527099

    Article  Google Scholar 

  • D. Seidl S. Müller (1977) ArticleTitleSeismische Oberflächenwellen J. Geophys. 42 283–328

    Google Scholar 

  • K. Stokoe R. Gauer J. Bay (1991) Experimental investigation of seismic surface waves in the seafloor J. Hovem M. Richardson R. Stoll (Eds) Shear Waves in Marine Sediments Kluwer Academic Publishers Netherlands 51–58

    Google Scholar 

  • R. Stoll G. Bryan R. Mithal (1991) ArticleTitleField experiments to study seafloor seismoacoustic response J. Acad. Soc. Am. 89 IssueID5 2232–2240

    Google Scholar 

  • H. Heijst Particlevan R. Snieder R. Nowack (1994) ArticleTitleResolving a low-velocity zone with surface-wave data Geophys. J. Int. 118 IssueID2 333–343

    Google Scholar 

  • R. Wang (1999) ArticleTitleA simple orthonormalization method for stable and efficient computations of Green’s functions Bull. Seism. Soc. Am. 89 IssueID3 733–741

    Google Scholar 

  • D. Whitcombe P. Connolly R. Reagan T. Redshaw (2002) ArticleTitleExtended elastic impedance for fluid and lithology prediction Geophysics 67 IssueID1 63–67

    Google Scholar 

  • S.G. Wright K.H. Stokoe J.M. Roesset (1994) ArticleTitleSASW measurements at geotechnical sites overlaid by water ASTM Special Tech. Publication 1213 39–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, G., Bohlen, T., Theilen, F. et al. Acquisition and Inversion of Dispersive Seismic Waves in Shallow Marine Environments. Mar Geophys Res 26, 287–315 (2005). https://doi.org/10.1007/s11001-005-3725-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-005-3725-6

Keywords

Navigation