Skip to main content
Log in

High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1 × 1) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1 × 1 provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, D.R., Bevilacqua, R.M., Nedoluha, G.E., Randall, C.R., Manney, G.L.: Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophys. Res. Lett. 30(12), 1599, doi:10.1029/2003GL017117 (2003)

    Article  Google Scholar 

  • Bojkov, R.D., Fioletov, V.E., Balis, D.S., Zerefos, C.S., Kadygrova, T.V., Shalamjansky, A.M.: Further ozone decline during the Northern Hemisphere winter-spring of 1994–1995 and the new record low ozone. Geophys. Res. Lett. 22, 2729–2732 (1995)

    Article  Google Scholar 

  • Braathen, G.O., Rummukainen, M., Kyro, E., Schmidt, U., Dahlback, A., Jorgensen, T., Fabian, R., Rudakov, V., Gil, M., Borchers, R.: Temporal development of ozone within the Arctic vortex during the winter of 1991/92. Geophys. Res. Lett. 21, 1407–1410 (1994)

    Article  Google Scholar 

  • Brasseur, G.P., Tie, X., Rasch, P.J., Lefevre, F.: A three-dimensional simulation of the Antarctic ozone hole: impact of anthropogenic chlorine on the lower stratosphere and upper troposphere. J. Geophys. Res. 02, 8909–8930 (1997)

    Article  Google Scholar 

  • Brune, W.H., et al.: The potential for ozone depletion in the Arctic polar stratosphere. Science 252, 1260–1266 (1991)

    Article  Google Scholar 

  • Burkholder, J.B., Orlando, J.J., Howard, C.J.: Ultraviolet Absoption Cross Section of Cl2O2 between 210 and 410 nm. J. Phys. Chem. 94, 687–695 (1990)

    Article  Google Scholar 

  • Carslaw, K.S., Kettleborough, J.A., Northway, M.J., Davies, S., Gao, R.-S., Fahey, D.W., Baumgardner, D.G., Chipperfield, M.P., Kleinbohl, A.: A vortex-scale simulation of the growth and sedimentation of large nitric acid hydrate particle. J. Geophys. Res. 107(D20), 8300, doi:10.1029/2001JD000467(2002)

    Article  Google Scholar 

  • Chipperfield, M.P.: Multiannual simulation with a three-dimensional chemical transport model. J. Gephys. Res. 104, 1781–1806 (1999)

    Article  Google Scholar 

  • Christensen, T., Knudsen, B.M., Streibel, M., Andersen, S.B., Benesova, A., Braathen, G., Claude, H., Davies, J., De Backer, H., Dier, H., Dorokhov, V., Gerding, M., Gil, M., Henchoz, B., Kelder, H. Kivi, R. Kyrö, E. Litynska, Z., Moore, D., Peters, G., Skrivankova, P., Stübi, R., Turunen, T., Vaughan, G., Viatte, P., Vik, A.F., von der Gathen, P., Zaitcev, I.: vortex-averaged Arctic ozone depletion in the winter 2002/2003. Atmos. Chem. Phys. 5, 131–138 (2005)

    Google Scholar 

  • Drdla, K., Schoeberl, M.R., Browell, E.V.: Microphysical modelling of the 1999–2000 Arctic winter, 1. Polar stratospheric clouds, denitrification, and dehydration. J. Geophys. Res. 107, 8312, doi:10.1029/2001JD000782[printed 108(D5), 2003] (2003)

    Google Scholar 

  • Davies, S., et al.: Modeling the effect of denitrification on Arctic ozone depletion during winter 1999/2000. J. Geophys. Res. 107 8322, doi:10.1029/2001JD000445[printed 108(D5), 2003] (2002)

    Article  Google Scholar 

  • Dessler, A.E., Wu, J., Santee, M.L., Schoeberl, M.R.: Satellite observations of temporary and irreversible denitrification. J. Geophys. Res., 104, 13,993–14,002 (1999)

    Google Scholar 

  • Fahey, D.W., et al.: Measurements of nitric oxide and total reactive nitrogen in the Antarctic stratosphere: observations and chemical implications. J. Geophys. Res. 94, 16,665–16,681 (1989)

    Google Scholar 

  • Fahey, D.W. et al.: In situ measurements of total reactive nitrogen, total water and aerosol in a polar stratospheric cloud in the Antarctic. J. Geophys. Res. 94, 11299–11315 (1989a)

    Google Scholar 

  • Fahey, D.W., et al.: The detection of large HNO3-containing particles in the winter Arctic stratosphere. Science 291, 1026–1031 (2001)

    Article  Google Scholar 

  • Fahey, D.W., Solomon, S., Kawa, S.R., Loewenstein, M., Podolske, J.R., Strahan, S.E., Chan, K.R.: A diagnostic for denitrification in the winter polar stratosphere. Nature 345, 698–702 (1990)

    Article  Google Scholar 

  • Gao, R.S., et al.: Role of NOy as a diagnostic of small-scale mixing in a denitrified polar vortex. J. Geophys. Res. 107 (D24), 4794, doi:10.1029/2002JD002332 (2002)

    Article  Google Scholar 

  • Gille, J.C., Russell III, J.M.,: The Limb Infrared Monitor of the Stratosphere: experiment Description, Performance, and Results. J. Geophys. Res. 89, 5125–5140 (1984)

    Article  Google Scholar 

  • Godin, S., Marchand, M., Hauchecorne, A., Lefevre, F.: Influence of Arctic polar ozone depletion on lower stratospheric ozone amounts at Haute-Provence Observatory (43.92^N, 5.71^E). J. Geophys. Res. 107(20), 8272, doi:10.1029/2001JD000516 (2002)

    Article  Google Scholar 

  • Goutail, F., Pommereau, J.P., Lefèvre, F., Van Roozendael, M., Andersen, S.B., Kastad Høiskar, B.A., Dorokhov, V., Kyro, E., Chipperfield, M.P., Feng, W.: Early unusual ozone loss during the Arctic winter 2002/2003 compared to other winters. Atmos. Chem. Phys. 5, 665–677 (2005)

    Google Scholar 

  • GrooΒ, J.-U., Gunther, G., Konopka, P., Muller, R., McKenna, D.S., Stroh, F., Vogel, B. Engel, A., Muller, M., Hoppel, K., Bevilacqua, R., Richard, E., Webster, C.R., Elkins, J.W., Hurst, D.F., Romashkin, P.A., Baumgardner, D.G.: simulation of ozone depletion in spring 2000 with the Chemical Lagrangian Model of the Stratosphere (CLaMS). J. Geophys. Res. 107(D20), 8295, doi:10.1029/2001JD000456 (2002)

    Article  Google Scholar 

  • Hansen, G., Svenoe, T., Chipperfield, M.P., Dahlback, A., Hopp, U.-P.: Evidence of substantial ozone depletion in winter 1995/96 over Northern Norway. Geophys. Res. Lett. 24, 799–802 (1997)

    Article  Google Scholar 

  • Hanson, D., Mauersberger, K.: Laboratory studies of the nitric acid trihydrate: implications for the south polar stratosphere. Geophys. Res. Lett. 15, 855–858 (1988)

    Google Scholar 

  • Harris, N.R.P., Rex, M., Goutail, F., Knudsen, B.M., Manney, G.L., Muller, R., von der Gathen, P.: Comparison of empirically derived ozone losses in the Arctic vortex. J. Geophys. Res. 107, D20, 10.1029/2001JD000482 (2002)

    Google Scholar 

  • Hauchecorne, A., Godin, S., Marchand, M., Heese, B., Souprayen, C.: Quantification of the transport of chemical constituents from the polar vortex to middle latitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity. J. Geophys. Res. 107, doi:10.1029/2001JD000491 (2002)

  • Heese, B., Godin, S., Hauchecorne, A.: Forecast and simulation of stratospheric ozone filaments: a validation of a high-resolution potential vorticity advection model by airborne ozone lidar measurements in winter 1998/1999. J. Geophys. Res. 106(D17), 20,011–20,024 (2001)

    Article  Google Scholar 

  • Hintsa, E.J., et al.: Dehydration and denitrification in the Arctic polar vortex during the 1995-1996 winter. Geophys. Res. Lett. 25, 501–504 (1998)

    Article  Google Scholar 

  • Hoppel K., Bevilacqua, R.M., Allen, D.R., Nedoluha, G., Randall, C.E.: POAM III observations of the anomalous 2002 Antarctic ozone hole. Geophys. Res. Lett. 30(7), 1394, doi:10.1029/2003GL016899 (2003)

    Article  Google Scholar 

  • Hubler, G., Fahey, D.W., Kelly, K.K., Montzka, D.D., Karroll, M.A. Tuck, A.F., Heidt, L.E., Pollock, W.H., Gregory, G.L., Vedder, J.F.: Redistribution of reactive odd nitrogen in the lower Arctic stratosphere. Geophys. Res. Lett. 17, 453–456 (1990)

    Google Scholar 

  • Hurst, D.F., Schauffler, S.M., Greenblatt, J.B., Jost, H., Herman, R.L., Elkins, J.W., Romashkin, P.A., Atlas, E.L., Donnelly, S.G., Podolske, J.R., Loewenstein, M. Webster, C.R., Flesch, G.J., Scott, D.C.: The construction of a unified, high-resolution nitrous oxide data set for ER-2 flights during SOLVE. J. Geophys. Res. 107 (ND20), 8271 (2002)

    Article  Google Scholar 

  • Kondo, Y., et al.: NOy-N2O correlation observed inside the Arctic vortex in February 1997: dynamical and chemical effects. J. Geophys. Res. 104, 8215–8224 (1999)

    Article  Google Scholar 

  • Konopka, P., GrooΒ, J.U., Hildegard, M.S., Muller, R.: Mixing and Chemical ozone loss during and after the Antarctic polar vortex major warming in September 2002, J. Atmos. Sci. 62(3), 848859, doi:10.1175/JAS-3329.1 (2005)

    Article  Google Scholar 

  • Kopp, G., et al.: Evolution of ozone and ozone-related species over Kiruna during the SOLVE/THESEO 2000 campaign retrieved from ground-based millimeter-wave and infrared observations. J. Geophys. Res. 107, 8308, doi:10.1029/2001JD001064,[printed 108 (D5), 2003] (2002)

    Article  Google Scholar 

  • Lefèvre, F., Figarol, F., Carslaw, K.S., Peter, T.: The 1997 Arctic ozone depletion quantified from three-dimensional model simulations. Geophys. Res. Lett. 25, 2425–2428 (1998)

    Article  Google Scholar 

  • Lefèvre, F., Brasseur, G.P., Folkins, I., Smith, A.K., Simon, P.: Chemistry of the 1991/1992 stratospheric winter: three dimensional model simulation. J. Geophys. Res. 99, 8183–8195 (1994)

    Article  Google Scholar 

  • Manney, G.L., Sabutis, J.L.: Development of the polar vortex in the 1999–2000 Arctic winter stratosphere. Geophys. Res. Lett. 27, 2589–2592 (2000)

    Article  Google Scholar 

  • Manney, G.L., Sabutis, J.L., Allen, D.R., Lahoz, W.A., Scaife, A.A., Randall, C.E, Pawson, S., Naujokat, B., Swinbank, R.: Simulations of dynamics and transport during the September 2002 Antarctic major warming. J. Atmos. Sci. 62(3), 690707, doi:10.1175/JAS-3313.1 (2005)

    Article  Google Scholar 

  • Manney, G.L., Froidevaux, L., Waters, J.W., Santee, M.L., Read, W.G., Flower, D.A., Zarnot, R.F., Zurek, R.W.: Arctic ozone depletion observed by UARS MLS during the 1994–95 winter. Geophys. Res. Lett. 23, 85–88 (1996)

    Article  Google Scholar 

  • Marchand, M., Godin, S., Hauchecorne, A., Lefevre, F., Bekki, S., Chipperfield, M.: Influence of polar ozone loss on northern mid-latitudes regions estimated by a high-resolution chemistry transport model during winter 1999–2000. J. Geophys. Res. 108(D5), 8326, doi:10.1029/2001JD000906 (2003)

    Article  Google Scholar 

  • Murray, F.W.: On the computation of saturation vapour pressure. J. Appl. Meterol. 6, 203–204 (1967)

    Article  Google Scholar 

  • Newman, P.A., et al.: An overview of the solve/theseo 2000 campaign. J. Geophys. Res. 107(D20), doi:10.1029/2001JD001303 (2002)

  • Pierce, R.B., et al.: Large-scale chemical evolution of the Arctic vortex during the 1999/2000 winter: HALOE/POAM III Lagrangian photochemical modelling for the SAGE III — Ozone Loss and Validation Experiment (SOLVE) campaign. J. Geophys. Res. 107, 8317, doi:10.1029/2001JD001063[printed 108(D5), 2003] (2002)

    Article  Google Scholar 

  • Poole, L.R., Trepte, C.R., Harvey, V.L., Toon, G.C., Van Valkenburg, R.L.: SAGE III observations of Arctic polar stratospheric clouds — December 2002. Geophys. Res. Lett. 30(23), 2216, doi:10.1029/2003GL018496 (2003)

    Article  Google Scholar 

  • Proffitt, M.H., McLaughlin, R.J.: Fast-response dual-beam UV absorption ozone photometer suitable for use on stratospheric balloons. Rev. Sci. Instrum. 54, 1719–1728 (1983)

    Article  Google Scholar 

  • Pruppacher, H.R., Klett, J.D.: Microstructure of atmospheric clouds and precipitations, 2nd ed. Kluwer Academic Publishers (1997)

  • Randall, C.E., Manney, G.L., Allen, D.R., Bevilacqua, R.M., Hornstein, J., Trepte, C., Lahoz, W., Ajtic, J., Bodeker, G.: Reconstruction and simulation of stratospheric ozone distribution during the 2002 austral winter. J. Atmos. Sci. 62(3), 748764, doi: 10.1175/JAS-3336.1 (2005)

    Article  Google Scholar 

  • Rex, M., et al.: Chemical depletion of Arctic ozone in winter 1999/2000. J. Geophys. Res. 107(D20), 8276, doi:10.1029/2001JD000533 (2002)

    Article  Google Scholar 

  • Rex, M., Salawitch, R.J., Santee, M.L., Waters, J.W., Hoppel, K., Bevilacqua, R.: On the unexplained stratospheric ozone losses during cold Arctic Januaries. Geophys. Res. Lett. 30 (1), 1008, doi:10.1029/2002GL016008 (2003)

    Article  Google Scholar 

  • Rex, M., et al.: A lagrangian approach to separate stratospheric chemical ozone loss from dynamical effects: results for the Arctic winters 91/92 and 94/95. International conference on ozone in the lower stratosphere, Halkidiki, Greece (1995)

  • Salawitch, R.J., Wofsy, S.C., Gottlieb, E.W., Lait, L.R., Newman, P.A., Schoeberl, M.R., Loewenstein, M., Podolske, J.R., Strahan, S.E., Proffitt, M.H., Webster, C.R., May, R.D., Fahey, D.W., Baumgardner, D., Dye, J.E., Wilson, J.C., Kelly, K.K., Elkins, J.W., Chan, K.R., Anderson, J.G.: Chemical loss of ozone in the Arctic polar vortex in the winter of 1991–1992. Science 261, 1146–1149 (1993)

    Article  Google Scholar 

  • Santee, M.L., et al.: Interhemispheric differences in polar stratospheric HNO3, H2O, ClO and O3. Science 267, 849–852 (1995)

    Article  Google Scholar 

  • Santee, M.L., et al.: Six years of UARS Microwave Limb Sounder HNO3 observations: seasonal, interhemispheric, and interannual differences in the lower stratosphere. J. Geophys. Res. 104, 8225–8246 (1999)

    Article  Google Scholar 

  • Santee, M.L., et al.: UARS Microwave Limb Sounder HNO3 observations: implications for Antarctic polar stratospheric clouds. J. Geophys. Res. 103, 13, 285–13313 (1998)

    Google Scholar 

  • Santee, M.L., et al.: UARS Microwave Limb Sounder observations of denitrification and ozone loss in the 2000 Arctic late winter. Geophys. Res. Lett. 27, 3213–3216 (2000)

    Article  Google Scholar 

  • Schiller, C., et al.: Dehydration in the Arctic stratosphere during the SOLVE/THESEO-2000 campaigns. J. Geophys. Res. 107, 10.1029/2001JD000463 (2002)

  • Schoeberl, M.R., Proffitt, M.H., Kelly, K.K., Lait, L.R., Newman, P.A., Rosenfield, J.E., Loewenstein, M., Podolske, J.R., Strahan, S.E., Chan, K.R.: Stratospheric constituent trends from ER-2 profile data. Geophys, Res. Lett. 17, 469–472 (1990)

    Google Scholar 

  • Singleton, C.S., Randall, C.E., Chipperfield, M.P., Davies, S., Feng, W., Bevilacqua, R.M., Hoppel, K.W., Fromm, M.D., Manney, G.L., Harvey, V.L.: 2002–2003 Arctic ozone loss deduced from POAM III satellite observations and the SLIMCAT chemical transport model. Atmos. Chem. Phys. 5, 597–609(2005)

    Google Scholar 

  • Sinnhuber, B.-M., et al.: Comparison of measurements and model calculations of stratospheric bromine monoxide. J. Geophys. Res. 107(D19), 4398, doi:10.1029/2001JD000940 (2002)

    Article  Google Scholar 

  • Stimpfle, R.M., Wilmouth, D.M., Salawitch, R.J., Anderson, J.G.: First measurements of ClOOCl in the stratosphere: the coupling of ClOOCl and ClO in the Arctic polar vortex. J. Geophys. Res. 109, D03301, doi:10.1029/2003JD003811 (2004)

    Article  Google Scholar 

  • Streibel, M., von der Gathen, P., et al.: Ozone loss rates over the Arctic 2002/03 and Antarctic 2003 measured with the Match approach. Proc. Quadrennial Ozone Symposium 55, ed. C. Zerefos, Kos, Greece (2004)

    Google Scholar 

  • Tabazadeh, A., et al.: Quantifying denitrification and its effect on ozone recovery. Science 288, 1407–1411 (2000)

    Article  Google Scholar 

  • Voigt, C., Schlager, H., Luo, B.P., Dörnbrack, A. Roiger, A. Stock, P., Curtius, J., Vössing, H., Borrmann, S., Davies, S., Konopka, P., Schiller, C., Shur, G., Peter, T.: Nitric acid trihydrate (NAT) formation at low NAT supersaturations. Atmos. Chem. Phys. Discuss. 4, 8579–8607 (2004)

    Article  Google Scholar 

  • Volk, C.M., Werner, A., Wetter, T., Ivanova, E., Wollny, A., Ulanovsky, A., Ravegnani, F., Schlager, H., Konopka, P., Toon, G.: Ozone loss within the 2003 Arctic vortex derived from in-situ observations with the Geophysica aircraft. Atmos. Chem. Phys. Discuss. (in preparation) (2006)

  • von Hobe, M, GrooΒ, J.—U., Muller, R., Hrechanyy, S., Winkler, U., Stroh, F.: A re-evaluation of the ClO/Cl2O2 equilibrium constant based on stratospheric in-situ observations. Atmospheric Chem. Phys. 5, 693–702 (2005)

    Article  Google Scholar 

  • Waibel, A.E., et al.: Arctic ozone loss due to denitrification. Science 283, 2064–2069 (1999)

    Article  Google Scholar 

  • Wamsley, P.R., et al.: Distribution of halon-1211 in the upper troposphere and lower stratosphere and the 1994 total bromine budget. J. Geophys. Res. 103, 1513–1526 (1998)

    Article  Google Scholar 

  • Waters, J.W., Froidevaux, L., Read, W.G., Manney, G.L., Elson, L.S., Flower, D.A., Zarnot, R.F., Harwood, R.S.: Stratospheric ClO and ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. Nature 362, 597–602 (1993)

    Article  Google Scholar 

  • WMO: Scientific Assessment of Ozone Depletion: 2002, ISBN 92–807–2261–1 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, O.P., Godin-Beekmann, S., Lefèvre, F. et al. High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations. J Atmos Chem 55, 205–226 (2006). https://doi.org/10.1007/s10874-006-9028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-006-9028-8

Key Words

Navigation