Skip to main content

Advertisement

Log in

Effects of nitrogen concentration on the taxonomic and functional structure of phytoplankton communities in the Western Baltic Sea and implications for the European water framework directive

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The European water framework directive and the marine strategy framework directive have the objective to establish at least ‘good’ ecological status in all European waters by 2015. Therefore a classification system has to be established in each European country, in order to assess their water bodies. For the German coastal waters of the Baltic Sea, a classification system for phytoplankton based on the abundance of Cyanophyceae and Chlorophyceae was already presented. This system has been successfully adapted in regions with low salinity levels (<10 PSU). With this study, we present the results trying to develop a classification system for our German region of the Baltic Sea characterized by higher salinity (>15 PSU). All present taxonomic groups, most common species and functional groups were tested. It could be shown that all tested correlations to nitrogen concentration as eutrophication descriptor are relatively week. Nevertheless, the biovolume of Cryptophyceae was found to be the most reliable phytoplankton composition indicator, which could serve as future assessment criterion. Furthermore, as proposed by some experts, the use of maximal dissolved winter nitrogen concentration as eutrophication descriptor might be an advantage over using the total nitrogen concentrations in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, D. M., P. M. Glibert & J. M. Burkholder, 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25: 704–726.

    Article  Google Scholar 

  • Andren, E., 1999. Changes in composition of the diatom flora during the lst century indicate increased eutrophication of the Oder estuary, south-western Baltic Sea. Estuarine, Coastal and Shelf Science 48: 665–676.

    Article  CAS  Google Scholar 

  • Balode, M., I. Purina, C. Béchemin & S. Y. Maestrini, 1998. Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea. Journal of Plankton Research 20: 2251–2272.

    Article  CAS  Google Scholar 

  • Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57: 289–300.

    Google Scholar 

  • Beman, J. M., K. R. Arrigo & P. A. Matson, 2005. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434: 211–214.

    Article  Google Scholar 

  • Devlin, M., 2007. Implementation of the Water Framework Directive in European marine waters. Marine Pollution Bulletin 55: 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Devlin, M., J. Barry, S. Painting & M. Best, 2009. Extending the phytoplankton tool kit for the UK Water Framework Directive: indicators of phytoplankton community structure. Hydrobiologia 633: 151–168.

    Article  Google Scholar 

  • Duarte, C. M., S. Agusti, J. M. Gasol, D. Vaqué & E. Vazquez-Dominguez, 2000. Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Marine Ecology Progress Series 206: 87–95.

    Article  Google Scholar 

  • Finni, T., K. Kononen, R. Olsonen & K. Wallström, 2001a. The history of cyanobacterial blooms in the Baltic Sea. Ambio 30: 172–178.

    CAS  PubMed  Google Scholar 

  • Finni, T., S. Laurila & S. Laakkonen, 2001b. The history of eutrophication in the sea area of Helsinki in the 20th century. Ambio 30: 264–271.

    CAS  PubMed  Google Scholar 

  • Garmedia, M., A. Borja, J. Franco & M. Revilla, 2013. Phytoplankton composition indicators for the assessment of eutrophication in marine waters: present state and challenges within the European directives. Marine Pollution Bulletin 66: 7–16.

    Article  Google Scholar 

  • Gasiunaite, Z. R., A. C. Cardoso, A.-S. Heiskanen, P. Hendriksen, P. Kauppila, I. Olenina, R. Pilkaityte, I. Purina, A. Razinkovas, S. Sagert, H. Schubert & N. Wasmund, 2005. Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Estuarine, Coastal and Shelf Science 65: 239–252.

    Article  Google Scholar 

  • Gelder, R. J., H. L. McIntyre & T. M. Kana, 1997. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series 148: 187–200.

    Article  Google Scholar 

  • Hendriksen, P., M. Revilla, S. Lehtinen, P. Kauppila, S. Kaitala, S. Agusti, J. Icely, A. Basset, S. Moncheva & K. Sörensen, 2009. Assessment of pigment data potential for multi-species and assemblage indices. WISER Deliverable D4: 1–2.

  • Hutchinson, G. E., 1969. Eutrophication, past and present. In Rohlich, R. A. (ed.), Eutrophication: Causes, Consequences and Correctives. National Academy of Sciences, Washington, DC: 17–26.

    Google Scholar 

  • Ianora, A., S. A. Poulet & A. Miralto, 2003. The effects of diatoms on copepod reproduction: a review. Phycologia 42(4): 351–363.

    Article  Google Scholar 

  • Jaanus, A., K. Toming, S. Hällfors, K. Kaljurand & I. Lips, 2009. Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. Hydrobiologia 629: 157–168.

    Article  CAS  Google Scholar 

  • Klaveness, D., 1989. Biology and ecology of the Cryptophyceae: status and challenges. Biological Oceanography 6: 257–270.

    Google Scholar 

  • Philippart, C. J. M., G. C. Cadée, W. van Raaphorst & R. Riegman, 2000. Long-term phytoplankton-nutrient interactions in a shallow coastal sea. Limnology and Oceanography 45: 131–144.

    Article  CAS  Google Scholar 

  • Sabetta, L., M. R. Vadrucci, A. Fiocca, E. Stanca, C. Mazziotti, C. Ferrari, M. Cabrini, E. Kongjka & A. Basset, 2008. Phytoplankton size structure in transitional water ecosystems: a comparative analysis of descriptive tools. Aquatic Conservation: Marine and Freshwater Ecosystems 18: S76–S87.

    Article  Google Scholar 

  • Sagert, S., U. Selig & H. Schubert, 2008a. Phytoplanktonindikatoren zur ökologischen Klassifizierung der deutschen Küstengewässer der Ostsee. Rostocker Meeresbiologische Beiträge 20: 45–69.

    Google Scholar 

  • Sagert, S., T. Rieling, A. Eggert & H. Schubert, 2008b. Development of a phytoplankton indicator system for the ecological assessment of brackish coastal waters (German Baltic Sea coast). Hydrobiologia 611: 91–103.

    Article  CAS  Google Scholar 

  • Sommer, U., 1994. Are marine diatoms favoured by high Si: N ratios? Marine Ecology Progress Series 115: 309–315.

    Article  CAS  Google Scholar 

  • Spatharis, S., G. Tsirtsis, D. B. Danielidis, T. D. Chi & D. Mouillot, 2007. Effect of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area. Estuarine, Coastal and Shelf Science 73: 807–815.

    Article  Google Scholar 

  • Spatharis, S., D. L. Roelke, P. G. Dimitrakopoulos & D. D. G. Kokkoris, 2011. Analysing the (mis)behaviour of Shannon index in eutrophication studies using field and simulated phytoplankton assemblages. Ecological Indicators 11: 697–703.

    Article  CAS  Google Scholar 

  • Suikkanen, S., M. Laamanen & M. Huttunen, 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science 71: 580–592.

    Article  Google Scholar 

  • Tett, P., R. Gowen, D. Mills, T. Fernandes, L. Gilpin, M. Huxham, K. Kennington, P. Read, M. Service, M. Wilkinson & S. Malcolm, 2007. Defining and detecting undesirable disturbance in the context of marine eutrophication. Marine Pollution Bulletin 55: 282–297.

    Article  CAS  PubMed  Google Scholar 

  • Toming, K. & A. Jaanus, 2007. Selecting potential summer phytoplankton eutrophication indicator species for the northern Baltic Sea. Proceedings of the Estonian Academy of Sciences. Biology, Ecology 56: 297–311.

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Plankton-Methodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9: 1–38.

    Google Scholar 

  • Wasmund, N., C. Schöppe, J. Göbel & M. von Weber. 2010. Chlorophyll in der Ostsee. 2010/3, Bundesamt für Schifffahrt und Hydrologie (BSH), Hamburg.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jaschinski.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaschinski, S., Flöder, S., Petenati, T. et al. Effects of nitrogen concentration on the taxonomic and functional structure of phytoplankton communities in the Western Baltic Sea and implications for the European water framework directive. Hydrobiologia 745, 201–210 (2015). https://doi.org/10.1007/s10750-014-2109-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2109-9

Keywords

Navigation