Skip to main content

Advertisement

Log in

Mediterranean marine copepods: basin-scale trends of the calanoid Centropages typicus

  • COPEPODA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Mediterranean Sea is located in a crossroad of mid-latitude and subtropical climatic modes that enhance contrasting environmental conditions over both latitudinal and longitudinal ranges. Here, we show that the large-scale environmental forcing is reflected in the basin scale trends of the adult population of the calanoid copepod Centropages typicus. The species is distributed over the whole Mediterranean basin, and maximal abundances were found in the north-western basin associated to oceanic fronts, and in the Adriatic Sea associated to shallow and semi enclosed waters. The peak of main abundances of C. typicus correlates with the latitudinal temperature gradient and the highest seasonal abundances occurred in spring within the 14–18°C temperature window. Such thermal cline may define the latitudinal geographic region where C. typicus seasonally dominates the >200 μm-sized spring copepod community in the Mediterranean Sea. The approach used here is generally applicable to investigate the large-scale spatial patterns of other planktonic organisms and to identify favourable environmental windows for population development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barale, V., D. Larkin, L. Fusco, J. C. Melinotte & G. Pittella, 1999. OCEAN Project: the European archive of CZSC historical data. International Journal of Remote Sensing 20: 1201–1218.

    Article  Google Scholar 

  • Beaugrand, G., J. A. Lindley, P. Helaouet & D. Bonnet, 2007. Macroecological study of Centropages typicus in the North Atlantic Ocean. Progress in Oceanography 72: 137–150.

    Article  Google Scholar 

  • Beaugrand, G., P. C. Reid, F. Ibanez, J. A. Lindley & M. Edwards, 2002. Reorganisation of North Atlantic marine copepod biodiversity and climate. Science 296: 1692–1694.

    Article  PubMed  CAS  Google Scholar 

  • Belmonte, G. & D. Potenza, 2001. Biogeography of the family Acartiidae (Calanoida) in the Ponto-Mediterranean Province. In Lopes, R. M., J. W. Reid & C. E. F. Rocha (eds), Copepoda: Developments in Ecology, Biology and Systematics. Hydrobiologia 453/454: 171–176.

  • Bernard, M., 1958. La production hivernale et printanière du zooplancton à Alger. Premières observations. Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée, Rapports et Procès Verbaux des Réunions 14: 157–165.

  • Béthoux, J. P., P. Morin, C. Madec & B. Gentili, 1992. Phosphorus and nitrogen behaviour in the Mediterranean Sea. Deep Sea Research 39: 1641–1654.

    Article  Google Scholar 

  • Bonnet, D. & C. Carlotti, 2001. Development and egg production in Centorpages typicus (Copepoda: Calanoida) fed different food types: a laboratory study. Marine Ecology Progress Series 224: 133–148.

    Article  Google Scholar 

  • Bonnet, D., A. Richardson, R. Harris, et al., 2005. An overview of Calanus helgolandicus ecology in European waters. Progress in Oceanography 65: 1–53.

    Google Scholar 

  • Bosc, E., A. Bricaud & D. Antoine, 2004. Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations. Global Biogeochem Cycles 18: GB1005, 10.1029/2003GB002034.

  • Broglio, E., E. Saiz, A. Calbet, I. Trepat & M. Alcaraz, 2004. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Marine Ecology Progress Series 35: 65–78.

    Google Scholar 

  • Calbet, A., F. Carlotti & R. Gaudy, 2007. The feeding ecology of the copepod Centropages typicus (kröyer). Progress in Oceanography 72: 137–150.

    Article  Google Scholar 

  • Calbet, A., S. Garrido, E. Saiz, M. Alcaraz & C. M. Duarte, 2001. Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. Journal of Plankton Research 23: 319–331.

    Article  Google Scholar 

  • Carlotti, F., D. Bonnet & C. Halsband-Lenk, 2007. Development and growth rates of Centropages typicus. Progress in Oceanography 72: 164–194.

    Article  Google Scholar 

  • Carlotti, F. & R. Harris (eds), 2007. The biology and ecology of Centropages typicus. Progress in Oceanography 72: 115–274.

  • Chelton, D. B., 1984. Commentary: short term climatic variability in the Northeast Pacific Ocean. In Pearcy, W. G. (ed.), The Influence of Ocean Conditions on the Production of Salmonids in the North Pacific. Oregon State University Press, Oregon: 87–99.

    Google Scholar 

  • Christou, E. D., 1998. Interannual variability of copepods in a Mediterranean coastal area (Saronikos Gulf, Aegean Sea). Journal of Marine Systems 15: 523–532.

    Article  Google Scholar 

  • Crise, A., J. L. Allen, J. Baretta, G. Crispi, R. Mosetti & C. Solidoro, 1999. The Mediterranean pelagic ecosystem response to physical forcing. Progress in Oceanography 44: 219–243.

    Article  Google Scholar 

  • Dahlhoff, E. P. & N. E. Rank, 2000. Functional and physiological consequences of genetic variation at phosphoglucose isomerase: heat shock protein expression is related to enzyme genotype in a montane beetle. Proceedings of the National Academic of Sciences 10: 10056–10061.

    Article  Google Scholar 

  • Daly Yahia, N., 1998. Contribution à l’étude du milieu et du zooplancton de la lagune de Bou Grara. Systematique, biomasse et relations trophiques. Diplôme d’Etudes Approfondies. Faculté des Sciences de Tunis, Université de Tunis II. 215 pp.

  • Dauby, P., 1980. Cycle annuel du zooplancton de surface de la baie de Calvi (Corse). Biomasse totale et plancton copépodien. Oceanologica Acta 3: 403–407.

    Google Scholar 

  • Della Croce, N., 1952. Variazioni stagionali dello zooplancton di superficie pescato a Punto-del-Mesco (La Spezia) tra il 15–10 1949 e il 30–3 1951. Bollettino dei Musei e Istituto di Biologia della Universita di Genova 24(176): 87–116.

    Google Scholar 

  • Della Croce, N., 1958. Copepodi pelagici raccolti nelle crociere talassografiche del “Robusto” nel Mar Ligure et Alto Tirreno. Bollettino dei Musei e Istituto di Biologia della Universita di Genova 29: 29–114.

    Google Scholar 

  • Dolan, J., F. Vidussi & H. Claustre, 1999. Plankton ciliates in the Mediterranean Sea: longitudinal trends. Deep-Sea Research I 46: 2025–2030.

    Article  Google Scholar 

  • Evans, M. S. & D. W. Shell, 1985. Mesh-size and collection characteristics of 50-cm diameter conical plankton nets. Hydrobiologia 122: 97–104.

    Article  Google Scholar 

  • Fernandez de Puelles, M. L., D. Gras & S. Hernandez de Leon, 2003. Annual cycle of zooplankton biomass, abundance and species composition in the neritic area of the Balearic Sea, Western Mediterranean. Marine Ecology 24: 123–139.

    Article  Google Scholar 

  • Furnestin, M.-L., 1983. Plancton et biogéographie: quelques exemples. Océanis 9: 289–316.

    Google Scholar 

  • Gaudy, R., 1972. Biologie des copépodes pélagiques du Golfe de Marseille. Recueil des travaux de la Station Marine d'Endoume 27: 93–184.

    Google Scholar 

  • Gaudy, R., 1984. Biological cycle of Centropages typicus in the North-western Mediterranean neritic waters. Crustaceana 7: 200–213.

    Google Scholar 

  • Gibbons, M. J., 1997. Pelagic biogeography of the South Atlantic Ocean. Marine Biology 129: 757–768.

    Article  Google Scholar 

  • Gilat, E., J. Kane & J. C. Martin, 1965. Study of an ecosystem in the coastal waters of the Ligurian Sea. II. Surface zooplankton. Bulletin de l'Institut Océanographique, Monaco 65(1353): 1–56.

  • Halsband-Lenk, C., F. Carlotti & W. Greve, 2004. Life-history strategies of calanoid congeners under two different climate regimes: a comparison. ICES Journal of Marine Science 61: 709–720.

    Article  Google Scholar 

  • Halsband-Lenk, C., H.-J. Hirche & F. Carlotti, 2002. Temperature impact on reproduction and development of congener copepod populations. Journal of Experimental Marine Biology and Ecology 271: 121–153.

    Article  Google Scholar 

  • Hirst, A. G. & T. Kiorboe, 2002. Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series 230: 195–209.

    Article  Google Scholar 

  • Hure, J. & F. Krsinic, 1998. Planktonic copepods of the Adriatic Sea. Spatial and temporal distribution. Natura Croatica, Zagreb, 7(Suppl 2): 1–135.

  • Hure, J. & B. Scotto di Carlo, 1969. Ripartizione quantitative e distributione verticale dei Copepodi pelagici di profondità su una stazione nel Mer Tirreno ed una nell’ Adriatico Meridional. Pubblicazioni della Stazione Zoologica di Napoli 37: 51–83.

  • Ianora, A., 1998. Copepods life-history traits in subtemperate regions. Journal of Marine Systems 15: 337–349.

    Article  Google Scholar 

  • Ianora, A., A. Miralto & C. Halsband-Lenk, 2007. Reproduction, hatching success, and early naupliar survival in Centropages typicus. Progress in Oceanography 72: 195–213.

    Article  Google Scholar 

  • IPCC, 2007. Climate Change 2007: The Physical Science Basis. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al, 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77: 437–471.

  • Kane, J., 1999. Persistent spatial and temporal abundance patterns for the late-stage copepodites of Centropages typicus (Copepoda: Calanoida) in the US Northeast Continental Shelf Ecosystem. Journal of Plankton Research 21(6): 1043–1064.

    Google Scholar 

  • Krom, M. D., N. Kress, S. Brenner & L. I. Gordon, 1991. Phosphorus limitation of primary production in the eastern Mediterranean Sea. Limnology and Oceanography 36: 424–432.

    Article  CAS  Google Scholar 

  • Krsinic, F. & D. Lucic, 1994. Mesozooplankton experiments with the ‘Adriatic’ sampler: differences of catch between 250 and 125 μm mesh netting gauze. Estuarine and Coastal Shelf Science 38: 113–118.

    Article  Google Scholar 

  • Lakkis, S., 1990a. Vingt ans d’observations sur le plancton des eaux libanaises :structure et fluctuations interannuelles. In: J. Godeaux (ed.), A propos de migrations lessepsiennes. Institut Oceanographique de Monaco, Monaco, pp. 51–66.

  • Lakkis, S., 1990b. Composition, diversité et successions des copépodes planctoniques des eaux libanaises (Méditerranée Orientale). Oceanologica Acta 13(4): 498–501.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, New York, New York, USA.

    Google Scholar 

  • Licandro, P. & F. Ibanez, 2000. Changes of zooplankton communities in the Gulf of Tigulio (Ligurian Sea, Western Mediterranean) from 1985 to 1995, Influence of hydroclimatic factors. Journal of Plankton Research 22: 2225–2253.

    Article  Google Scholar 

  • Lindley, J. A. & P. C. Reid, 2002. Variations in the abundance of Centropages typicus and Calanus helgolandicus in the North Sea : deviations from close relationships with temperature. Marine Biology 141: 153–165.

    Article  Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Mazza, J., 1966. Les copépodes de la Méditerranée (bassin occidental). Commission, XXème Congrès C.I.E.S.S.M., Comité du Plancton, Bucarest. Oct 1966: 1–99.

  • Mazzocchi, M. G., E. D. Christou, I. Di Capua, M. L. Fernández de Puelles, S. Fonda-Umani, J. C. Molinero, P. Nival & I. Siokou-Frangou, 2007. The temporal variability of Centropages typicus in the Mediterranean Sea: from seasonal to decadal scales. Progress in Oceanography 72: 214–232.

    Article  Google Scholar 

  • Mazzocchi, M. G. & M. Ribera d’Alcala, 1995. Recurrent Patterns in Zooplankton Structure and Succession in a Variable Coastal Environment. ICES Journal of Marine Science 52: 679–691.

    Article  Google Scholar 

  • Molinero, J. C., 2003. Abundance variability of planktonic copepods in the Mediterranean sea. Mechanisms and characteristic scales: the Centropages typicus Case Study. Ph.D. Thesis, Paris VI University, Paris, France, 200 pp (in French).

  • Molinero, J. C., F. Ibanez, S. Souissi, M. Chifflet & P. Nival, 2005. Phenological changes in the Northwestern Mediterranean copepods Centropages typicus and Temora stylifera linked to climate forcing. Oecologia 145: 640–649.

    Article  PubMed  Google Scholar 

  • Nichols, J. H. & H. B. Thompson, 1991. Mesh selection of copepodite and nauplius stages of four calanoid copepods. Journal of Plankton Research 13: 661–671.

    Article  Google Scholar 

  • Paramo, J., R. A. Quiñones, A. Ramirez & R. Wiff, 2003. Relationship between abundance of small pelagic fishes and environmental factors in the Colombian Caribbean Sea: an analysis based on hydroacoustic information. Aquatic Living Resources 16: 239–245.

    Article  Google Scholar 

  • Perry, R. I. & S. J. Smith, 1994. Identifying habitat associations of marine fishes using survey data: an application in the Northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 51: 589–602.

    Article  Google Scholar 

  • Planque, B. & S. Batten, 2000. Calanus finmarchicus in the North Atlantic: the year of Calanus in the context of interdecadal change. ICES Journal of Marine Science 57: 1528–1535.

    Article  Google Scholar 

  • Planque, B. & F. Ibanez, 1997. Long-term time series in Calanus finmarchicus abundance—a question of space? Oceanologica Acta 20: 159–164.

    Google Scholar 

  • Pörtner, H. O., 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88: 137–146.

    Article  PubMed  Google Scholar 

  • Pyper, B. J. & R. M. Peterman, 1998. Comparison of methods to account for autocorrelation in correlation analysis of fish data. Canadian Journal of Fisheries and Aquatic Sciences 55: 2127–2140.

    Article  Google Scholar 

  • Razouls, C., 1972. Estimation de la Production Secondaire (Copépodes Pélagiques) dans une Provence Néritique Méditerranéenne (Golfe de Lion). Thèse de Doctorat d’Etat Thesis, Université de Paris VI, Paris, France, 301 pp.

  • Razouls, C., F. de Bovée & J. Kouwenberg, 2006. Diversité et répartition géographique chez les copépodes planctoniques marins [available on internet at www.obsbanyuls.fr/Copepodes/RAZOULS1.htm]. Accessed October 2006.

  • Razouls, C. & E. Lepernac, 2006. Distribution géographique des copépodes pélagiques, ou en situation particulière (formes hyperbenthiques et des excavations sous-marines), des origines à 2005 en Méditerranée [available on internet at www.obsbanyuls.fr/Copepodes/RAZOULS1.htm]. Accessed October 2006.

  • Regner, D. & T. Vučetič, 1980. Seasonal and multiannual fluctuations of copepods in the Kastela Bay (1960–1969). Acta Adriatica 21: 101–122.

    Google Scholar 

  • Siokou-Frangou, I., 1996. Zooplankton annual cycle in the Mediterranean coastal area. Journal of Plankton Research 18: 203–224.

    Article  Google Scholar 

  • Urban, D. L., 2000. Using model analysis to design monitoring programs for landscape management and impact assessment. Ecological Applications 10: 1820–1832.

    Article  Google Scholar 

  • Van Der Spoel, S. & R. P. Heyman, 1983. A Comparative Atlas of Zooplankton, Biological Patterns in the Oceans. Wetenschappelijke Uitgeverij Bunge, Utrecht: 186 pp.

    Google Scholar 

  • Vives, F., 1966. Zooplancton neritico de las aguas de Castellon (Mediterraneo Occidental). Investigacion Pesquera 30: 49–166.

    Google Scholar 

  • Vukanič, D., 1971. Kopepodi Bokokotorskog Zaliva. Studia Marina 5: 21–60 (in Serbo-Croata).

  • Vukanič, D., 1975. Contributions to the study of zooplankton in the coastal waters of the South Adriatic Sea. Ecology 10: 79–106.

    Google Scholar 

  • Wood-Walker, R., 2001. Spatial distribution of copepod general along the Atlantic Meridional Transect. Hydrobiologia 453/454: 161–170.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Claude Razouls, Fouzi Zerouali and Michel Boisson who shared insights and unpublished data. We are grateful to all the crews of the many boats who helped with the sampling at the different sites. SST data were provided by the NOAA-CIRES ESRL/PSD Climate Diagnostics branch, Boulder, Colorado, USA, from their web site at http://www.cdc.noaa.gov/. We thank Cathy Smith for maintaining Reanalysis climate data. CZSC data were provided by OCEAN project at http://daac.gsfc.nasa.gov. We also thank Sami Souissi for helpful criticism in a former draft of the manuscript. The comments of two anonymous reviewers help to improve the manuscript. This work is a contribution to the priority program AQUASHIFT (The impact of climate variability on aquatic ecosystems, IFM-GEOMAR, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Molinero.

Additional information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinero, J.C., Vukanič, V., Lučić, D. et al. Mediterranean marine copepods: basin-scale trends of the calanoid Centropages typicus . Hydrobiologia 617, 41–53 (2009). https://doi.org/10.1007/s10750-008-9524-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9524-8

Keywords

Navigation