Skip to main content

Advertisement

Log in

SBA-15 as Support for Ni–MoS2 HDS Catalysts Derived from Sulfur-containing Molybdenum and Nickel Complexes in the Reaction of HDS of DBT: An All Sulfide Route

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

MoS2 HDS catalysts promoted with Ni supported on SBA-15 were synthesized from sulfur containing Mo (ammonium thiomolybdate, ATM, and tetramethylammonium thiomolybdate, TMATM) and a Ni complex (Nickel diethylthiocarbamate, NiDETC). The catalysts have been characterized by X-ray diffraction (XRD), N2-physisorption and High-resolution transmission electron microscopy (HRTEM). The catalytic performance in the hydrodesulfurization (HDS) reaction of dibenzothiophene (DBT) was examined at T = 623 K and P H2 = 3.4 Mpa. In comparison with the impregnation mode, the nature of the employed thiomolybdate complex shows a stronger influence on the MoS2 morphology and consequently on the HDS activity of DBT. A similar high HDS activity to a commercial NiMo/γ–Al2O3 catalyst despite the pronounced stacking number is shown for a Ni–MoS2/SBA-15 catalyst derived from ATM. The catalysts derived from TMATM showed lower HDS activities compared to the catalysts obtained from ATM precursors due to probably the presence of closed shell structures (nano-onions) of MoS2 which offer significantly smaller amount of HDS active sites (edge sites). Moreover, the HYD/DDS ratios are interestingly higher with respect to the HYD/DDS ratio of the commercial NiMo/γ–Al2O3 catalyst which could be ascribed to the generation of multilayered MoS2 active phase.

Graphical Abstract

Nickel promoted molybdenum sulfide catalysts supported on mesoporous SBA-15 were prepared by an all sulfide route using Mo and Ni thiosalts. Similar high catalytic activity to a NiMo/γ–Al2O3 catalyst at high Mo loading is observed for Ni–MoS2/SBA-15 catalysts derived from ammonium thiomolybdate despite a pronounced stacking of MoS2 slabs. The catalysts prepared with tetramethylammonium thiomolybdate show lower HDS activities probably due to the generation of nano-onions composed of bent MoS2 with a low crystalline perfection. The enhancement of the Ni content by post-impregnation leads to the formation of segregated Ni3S2 particles, which can cover the surface of the Ni–Mo–S phase resulting in a decrease of the HDS activity. The multilayered nature of the Ni–MoS2 phase may be responsible for the higher HYD/DDS ratios (0.79–1.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  2. Vradman L, Landau MV, Herskowitz M, Ezersky V, Talianker M, Nikitenko S, Koltypin Y, Gedanken A (2003) J Catal 213:163

    Article  CAS  Google Scholar 

  3. Dhar GM, Kumaran GM, Kumar M, Rawat KS, Sharma LD, Raju BD, Rao KSR (2005) Catal Today 99:309

    Article  CAS  Google Scholar 

  4. Klimova T, Lizama L, Amezcua JC, Roquero P, Terrés E, Navarrete J, Domínguez JM (2004) Catal Today 98:141

    CAS  Google Scholar 

  5. Kumaran GM, Garg S, Soni K, Kumar M, Sharma LD, Dhar GM, Rao KSR (2006) Appl Catal A Gen 305:123

    Article  CAS  Google Scholar 

  6. Gutiérrez OY, Fuentes GA, Salcedo C, Klimova T (2006) Catal Today 116:485

    Article  Google Scholar 

  7. Gutiérrez OY, Valencia D, Fuentes GA, Klimova T (2007) J Catal 249:138

    Article  Google Scholar 

  8. Huang Z-D, Bensch W, Kienle L, Fuentes S, Alonso G, Ornelas C (2008) Cat Lett 122:57

    Article  CAS  Google Scholar 

  9. Huang Z-D, Bensch W, Kienle L, Fuentes S, Alonso G, Ornelas C (2008) Cat Lett (Submitted)

  10. Huang Z-D, Bensch W, Sigle W, van Aken PA, Kienle L, Vitova T, Modrow H, Ressler T (2008) J Mater Sci 43:244

    Article  CAS  Google Scholar 

  11. Brieler FJ, Grundmann P, Fröba M, Chen LM, Klar PJ, Heimbrodt W, von Nidda HAK, Kurz T, Loidl A (2004) J Am Chem Soc 126:797

    Article  CAS  Google Scholar 

  12. Poisot M, Bensch W, Fuentes S, Alonso G (2006) Thermochim Acta 444:35

    Article  CAS  Google Scholar 

  13. Jorgensen CK (1962) J Inorg Nucl Chem 24:1571

    Article  Google Scholar 

  14. E. 1.0, AnaliTEX (2002–2007) Stockholm, Sweden

  15. Whitehurst DD, Isoda T, Mochida I (1998) Adv Catal 42:345

    Article  CAS  Google Scholar 

  16. Candia R, Clausen BS, TopsØe H (1982) J Catal 77:564

    Article  CAS  Google Scholar 

  17. Poisot M, Bensch W, Fuentes S, Ornelas C, Alonso G (2007) Cat Lett 117:43

    Article  CAS  Google Scholar 

  18. Zhao XJ, Wei J (1994) J Catal 147:429

    Article  CAS  Google Scholar 

  19. Eijsbouts S, van den Oetelaar LCA, van Puijenbroek RR (2005) J Catal 229:352

    Article  CAS  Google Scholar 

  20. Landau MV, Vradman L, Herskowitz M, Koltypin Y, Gedanken A (2001) J Catal 201:22

    Article  CAS  Google Scholar 

  21. Petkov V, Billinge SJL, Larson P, Mahanti SD, Vogt T, Rangan KK, Kanatzidis MG (2002) Phy Rev B 65:092105

    Article  Google Scholar 

  22. Vincent R, Midgley PA (1994) Ultramicroscopy 53:271

    Article  CAS  Google Scholar 

  23. Gjonnes J, Hansen V, Krerneland A (2004) Microsc Microanal 10:16

    Article  CAS  Google Scholar 

  24. Weirich TE, Portillo J, Cox G, Hibst H, Nicolopoulos S (2006) Ultramicroscopy 106:164

    Article  CAS  Google Scholar 

  25. Gemmi M, Zou X, Hovmoller S, Migliori A, Vennstrom M, Andersson Y (2003) Acta Cryst A59:117

    CAS  Google Scholar 

  26. Own C (2005) Northwestern University Evanston Illinois

  27. Fjellvag H, Andersen A (1994) Acta Chem Scand 48:290

    Article  CAS  Google Scholar 

  28. Sanders JV (1986) Ultramicroscopy 20:33

    Article  CAS  Google Scholar 

  29. Sanders JV (1986) J Electr Micr Techn 3:67

    Article  CAS  Google Scholar 

  30. Tenne R, Margulis L, Genut M, Hodes G (1992) Nature 360:444

    Article  CAS  Google Scholar 

  31. Margulis L, Salitra G, Talianker M, Tenne R (1993) Nature 365:113

    Article  CAS  Google Scholar 

  32. Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) Science 267:222

    Article  CAS  Google Scholar 

  33. Srolovitz DJ, Safran SA, Homyonfer M, Tenne R (1995) Phys Rev Lett 74:1779

    Article  CAS  Google Scholar 

  34. Bar-Sadan M, Kaplan-Ashiri I, Tenne R (2007) Eur Phys J 149:71 Special Toppics

    Google Scholar 

  35. Camacho-Bragado GA, Elechiguerra JL, Olivas A, Fuentes S, Galvan D, Yacaman MJ (2005) J Catal 234:182

    Article  CAS  Google Scholar 

  36. Lauritsen JV, Bollinger MV, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2004) J Catal 221:510

    Article  CAS  Google Scholar 

  37. Wilkinson K, Merchan MD, Vasudevan PT (1997) J Catal 171:325

    Article  CAS  Google Scholar 

  38. Qian WH, Hachiya Y, Wang DH, Hirabayashi K, Ishihara A, Kabe T, Okazaki H, Adachi M (2002) Appl Catal A Gen 227:19

    Article  CAS  Google Scholar 

  39. Karroua M, Matralis H, Grange P, Delmon B (1993) J Catal 139:371

    Article  CAS  Google Scholar 

  40. Furimsky E, Massoth FE (1993) Catal Today 17:535

    Article  Google Scholar 

  41. Absihalabi M, Stanislaus A, Trimm DL (1991) Appl Catal 72:193

    Article  CAS  Google Scholar 

  42. Brito JL, Severino F, Delgado NN, Laine J (1998) Appl Catal A Gen 173:193

    Article  CAS  Google Scholar 

  43. Lauritsen JV, Kibsgaard J, Olesen GH, Moses PG, Hinnemann B, Helveg S, NØrskov JK, Clausen BS, TopsØe H, Lægsgaard E, Besenbacher F (2007) J Catal 249:218

    Article  Google Scholar 

  44. Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, van Santen RA (2001) J Catal 199:224

    Article  CAS  Google Scholar 

  45. Kasztelan S (1990) Langmuir 6:590

    Article  CAS  Google Scholar 

  46. Ferdous D, Dalai AK, Adjaye J, Kotlyar L (2005) Appl Catal A Gen 294:80

    Article  CAS  Google Scholar 

  47. Cristol S, Paul JF, Payen E, Bougeard D, Hutschka F, Clémendot S (2004) J Catal 224:138

    Article  CAS  Google Scholar 

  48. Egorova M, Prins R (2006) J Catal 241:162

    Article  CAS  Google Scholar 

  49. Alonso G,Chianelli RR,Fuentes S, Torres B (2007) U.S. Patent

  50. Herrera JM, Reyes J, Roquero P, Klimova T (2005) Micropor Mesopor Mater 83:283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank V. Duppel for practical TEM work, Prof. A. Simon for enabling the TEM experiments. Financial support by the Deutsche Forschungsgemeinschaft (DFG, grant BE 1653/22-1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bensch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, ZD., Bensch, W., Kienle, L. et al. SBA-15 as Support for Ni–MoS2 HDS Catalysts Derived from Sulfur-containing Molybdenum and Nickel Complexes in the Reaction of HDS of DBT: An All Sulfide Route. Catal Lett 127, 132–142 (2009). https://doi.org/10.1007/s10562-008-9656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9656-5

Keywords

Navigation