Skip to main content

Advertisement

Log in

An Efficient Non-iterative Bulk Parametrization of Surface Fluxes for Stable Atmospheric Conditions Over Polar Sea-Ice

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In climate and weather prediction models the near-surface turbulent fluxes of heat and momentum and related transfer coefficients are usually parametrized on the basis of Monin–Obukhov similarity theory (MOST). To avoid iteration, required for the numerical solution of the MOST equations, many models apply parametrizations of the transfer coefficients based on an approach relating these coefficients to the bulk Richardson number \(Ri_{b}\). However, the parametrizations that are presently used in most climate models are valid only for weaker stability and larger surface roughnesses than those documented during the Surface Heat Budget of the Arctic Ocean campaign (SHEBA). The latter delivered a well-accepted set of turbulence data in the stable surface layer over polar sea-ice. Using stability functions based on the SHEBA data, we solve the MOST equations applying a new semi-analytic approach that results in transfer coefficients as a function of \(Ri_{b}\) and roughness lengths for momentum and heat. It is shown that the new coefficients reproduce the coefficients obtained by the numerical iterative method with a good accuracy in the most relevant range of stability and roughness lengths. For small \(Ri_{b}\), the new bulk transfer coefficients are similar to the traditional coefficients, but for large \(Ri_{b}\) they are much smaller than currently used coefficients. Finally, a possible adjustment of the latter and the implementation of the new proposed parametrizations in models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreas EL, Horst TW, Grachev AA, Persson POG, Fairall CW, Guest PS, Jordan RE (2010a) Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Q J R Meteorol Soc 138:927–943

    Article  Google Scholar 

  • Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2010b) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11:87–104

    Article  Google Scholar 

  • Basu S, Lacster A (2017) A cautionary note on the use of Monin-Obukhov similarity theory in very high-resolution large-eddy simulations. Boundary-Layer Meteorol 163:351–355

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Parameterization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341

    Article  Google Scholar 

  • Businger JA, Wyngard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Byun DW (1990) On the analytical solutions of flux-profile relationships for the atmospheric surface layer. J Appl Meteorol 29:652–657

    Article  Google Scholar 

  • Castellani G, Lüpkes C, Hendricks S, Gerdes R (2014) Variability of Arctic sea-ice topography and its impact on the atmospheric surface drag. J Geophys Res Oceans 119:6743–6762. doi:10.1002/2013JC009712

    Article  Google Scholar 

  • Cheng Y, Brutsaert W (2005) Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorol 114:519–538

    Article  Google Scholar 

  • Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamedi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118:273–303. doi:10.1007/s10546-005-3780-1

    Article  Google Scholar 

  • Deardorff JW (1968) Dependence of air-sea transfer coefficients on bulk stability. J Geophys Res 73:2549–2557

    Article  Google Scholar 

  • Doms G, Förstner Heise E, Herzog H-J, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz J-P, Vogel G (2011) A description of the nonhydrostatic regional COSMO model. Part II physical parameterization, Deutscher Wetterdienst, Offenbach, p 154

    Google Scholar 

  • Dvornikov AY, Martyanov SD, Ryabchenko VA, Eremina TR, Isaev AV, Sein DV (2017) Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant Hanhikivi-1 on the local thermal regime. Earth Syst Dyn. 8:265–282. doi:10.5194/esd-8-265-2017

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationship. Boundary-Layer Meteorol 7:363–372

    Article  Google Scholar 

  • Fairall CW, Markson R (1987) Mesoscale variations in surface stress, heat fluxes, and drag coefficient in the marginal ice zone during the 1983 Marginal Ice Zone Experiment. J Geophys Res 92:6921–6932

    Article  Google Scholar 

  • Foken T (2006) 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorol 119:431–447

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316pp

  • Giorgetta MA, Roeckner E, Mauritsen T, Stevens B, Bader J, Crueger T, Esch M, Rast S, Kornblueh L, Schmidt H, Kinne S, Möbis B, Krismer T (2012) The atmospheric general circulation model ECHAM6. Model description, MPI, Hamburg,156 pp

  • Grachev AA, Fairall CW (1997) Dependence of the Monin-Obukhov stability parameter on the bulk Richardson number over the ocean. J Appl Meteorol 36:406–414

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124:315–333. doi:10.1007/s10546-007-9177-6

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147:51–82

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2015) Similarity theory based on the Dougherty-Ozmidov length scale. Q J R Meteorol Soc 141:1845–1856. doi:10.1002/qj.2488

    Article  Google Scholar 

  • Gromke C, Manes C, Walter B, Lehning M, Guala M (2011) Aerodynamic roughness length of fresh snow. Boundary-Layer Meteorol 141:21–34. doi:10.1007/s10546-011-9623-3

    Article  Google Scholar 

  • Guilloteau E (1998) Optimized computation of transfer coefficients in surface layer with different momentum and heat roughness length. Boundary-Layer Meteorol 87:147–160

    Article  Google Scholar 

  • Hartmann J, Kottmeier C, Wamser C, Augstein E (1994) Aircraft measured atmospheric momentum, heat and radiation fluxes over Arctic sea ice. In: Johannessen OM, Muench RD, Overland JE (eds) The polar oceans and their role in shaping the global environment. American Geophysical Union, Washington, DC, pp 443–454

    Google Scholar 

  • Holtslag AAM, De Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. Boundary-Layer Meteorol 37:689–704

    Google Scholar 

  • Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918

    Article  Google Scholar 

  • Launiainen J (1995) Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux profile studies. Boundary-Layer Meteorol 76:165–179

    Article  Google Scholar 

  • Li Y, Gao Z, Lenschow DH, Chen F (2010) An improved approach for parameterizing surface-layer turbulent transfer coefficients in numerical models. Boundary-Layer Meteorol 137:153–165. doi:10.1007/s10546-010-9523-y

    Article  Google Scholar 

  • Li Y, Gao Z, Li D, Wang L, Wang H (2014) An improved non-iterative surface layer flux scheme for atmospheric stable stratification conditions. Geosci Model Dev 7:515–529. doi:10.5194/gmd-7-515-2014

    Article  Google Scholar 

  • Louis J-F (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17:187–202

    Article  Google Scholar 

  • Louis J-F, Tiedtke M, Geleyn J-F (1982) A short history of the operational PBL-parameterization at ECMWF. In: Proceedings of the ECMWF workshop on boundary layer parameterization, November 1981. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK, pp 59–79

  • Lüpkes C, Gryanik VM (2015) A stability-dependent parametrization of transfer coefficients for momentum and heat over polar sea ice to be used in climate models. J Geophys Res Atmos 120:552–581. doi:10.1002/2014JD022418

    Article  Google Scholar 

  • Lüpkes C, Gryanik VM, Hartmann J, Andreas EL (2012) A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J Geophys Res 117:D13112. doi:10.1029/2012JD017630

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol. 90:375–396

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, vol 1. MIT Press, Cambridge, 769 pp

  • Obukhov AM (1946) Turbulence in an atmosphere with a non-uniform temperature. Trudy Inst Theoret Geofiz Akad NAuk SSSR 1:95–115

    Google Scholar 

  • Sein DV, Mikolajewicz U, Gröger M, Fast I, Cabos W, Pinto JG, Hagemann S, Semmler T, Izquierdo A, Jacob D (2015) Regionally coupled atmosphere ocean sea ice marine biogeochemistry model ROM: 1. Description and validation. J Adv Model Earth Syst 7:268–304. doi:10.1002/2014MS000357

    Article  Google Scholar 

  • Sidorenko D, Rackow T, Jung T, Semmler T, Barbi D, Danilov S, Dethloff K, Dorn W, Fieg K, Goessling HF, Handorf D, Harig S, Hiller W, Juricke S, Losch M, Schröter J, Sein DV, Wang Q (2015) Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part I: mdel formulation and mean climate. Clim Dyn 44:757–780. doi:10.1007/s00382-014-2290-6

    Article  Google Scholar 

  • Uttal T, Curry JA, McPhee MG, Perovich DK, Moritz RE, Maslanik JA, Guest PS, Stern HL, Moore JA, Turenne R, Heiberg A, Serreze MC, Wylie DP, Persson OG, Paulson CA, Halle C, Morison JH, Wheeler PA, Makshtas A, Welch H, Shupe MD, Intrieri JM, Stamnes K, Lindsey RW, Pinkel R, Pegau WS, Stanton TP, Grenfeld TC (2002) Surface heat budget of the Arctic Ocean. Bull Am Meteorol Soc 83:255–275

    Article  Google Scholar 

  • Viterbo P, Beljaars A, Mahfouf J-F, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Q J R Meteorol Soc 125:2401–2426

    Article  Google Scholar 

  • Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J R Meteorol Soc 96:67–90

    Article  Google Scholar 

  • Wouters H, De Ridder K, van Lipzig NPM (2012) Comprehensive parametrizations of surface-layer transfer coefficients for use in atmospheric numerical models. Boundary-Layer Meteorol 145:539–550

    Article  Google Scholar 

  • Yang K, Tamai N, Koike T (2001) Analytical solution of surface layer similarity equations. J Appl Meteorol 40:1647–1653

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dmitry Sein, Dr. Dmitry Chechin and Dr. Felix Pithan for helpful comments and suggestions. We are grateful for constructive comments of Dr. Andrey Grachev and three other anonymous reviewers, especially concerning questions to the universality of the G2007 functions and the developed parametrization. We acknowledge also the support by the SFB/TR172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)\(^3\) funded by the Deutsche Forschungsgemeinschaft (DFG). Funding was also obtained by the German Federal Ministry of Education and Research (BMBF) for the project EXOSYSTEM ERA-NET (Research Grant 01DJ16016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir M. Gryanik.

Appendix: Fluxes of Latent Heat in the Surface Layer

Appendix: Fluxes of Latent Heat in the Surface Layer

In general, the set of bulk MOST equations includes in addition to the equations for momentum and heat a bulk equation for the flux of specific humidity E. The latter equation can be written (see, e.g., Garratt 1992) as

$$\begin{aligned} E = -\rho \, \lambda \,C_{q}\,|\mathbf {v}(z)|(q - q_0) \end{aligned}$$
(41)

with the transfer coefficient for latent heat \(C_q\). Here, \(\lambda \) is the latent heat of evaporation and q is the specific humidity. Index 0 refers to the surface value as before.

The coefficient \(C_{q}\) can be written similar to Eq. 4a and 4b as

$$\begin{aligned} C_q = C_{qn} \,f_q\,, \end{aligned}$$
(42)

where

$$\begin{aligned} C_{qn} = \frac{\kappa ^2}{\ln \epsilon \,\ln \epsilon _q}\,, \end{aligned}$$
(43)

with the normalized transfer coefficients for latent heat \(f_q\), given as

$$\begin{aligned} f_q = \bigg [ 1 - \frac{\psi _m (\zeta )-\psi _m (\zeta /\epsilon )}{\ln \epsilon }\bigg ]^{-1}\,\bigg [ 1 - \frac{\psi _q (\zeta )-\psi _q (\zeta /\epsilon _q)}{\ln \epsilon _q}\bigg ]^{-1}, \end{aligned}$$
(44)

and where \(f_q\) is normalized as \(f_q = 1\) for neutral stability. Here, \(\psi _q(\zeta )\) is the MOST stability correction function for latent heat.

Following, e.g., G2007 and Grachev and Fairall (1997), we applied the Reynolds analogy for humidity and heat using an approximation \(C_q =C_h\) in the MOST framework. The flux H is then defined according to Eq. 2 as a combination of the heat flux \(F= - \rho \,c_p\,C_h\,|\mathbf {v}(z)|\,[\theta - \theta _0]\) and specific humidity flux (see Eq. 41), if the virtual potential temperature \(\theta _{v}=\theta +0.61{\varTheta }q\) is introduced. The bulk Richardson number is defined then as a non-dimensional combination of wind speed, potential temperature and specific humidity according to Eq. 12 in Sect. 2.

The Reynolds analogy is not always a correct assumption but for polar ocean conditions it is a reasonable first approximation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryanik, V.M., Lüpkes, C. An Efficient Non-iterative Bulk Parametrization of Surface Fluxes for Stable Atmospheric Conditions Over Polar Sea-Ice. Boundary-Layer Meteorol 166, 301–325 (2018). https://doi.org/10.1007/s10546-017-0302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0302-x

Keywords

Navigation