Skip to main content
Log in

‘Observations and Modelling of Cold-air Advection over Arctic Sea Ice’

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Aircraft observations of the atmospheric boundary layer (ABL) over Arctic sea ice were made during non-stationary conditions of cold-air advection with a cloud edge retreating through the study region. The sea-ice concentration, roughness, and ABL stratification varied in space. In the ABL heat budget, 80% of the Eulerian change in time was explained by cold-air advection and 20% by diabatic heating. With the cloud cover and inflow potential temperature profile prescribed as a function of time, the air temperature and near-surface fluxes of heat and momentum were well simulated by the applied two-dimensional mesoscale model. Model sensitivity tests demonstrated that several factors can be active in generating unstable stratification in the ABL over the Arctic sea ice in March. In this case, the upward sensible heat flux resulted from the combined effect of clouds, leads, and cold-air advection. These three factors interacted non-linearly with each other. From the point of view of ABL temperatures, the lead effect was far less important than the cloud effect, which influenced the temperature profiles via cloud-top radiative cooling and radiative heating of the snow surface. The steady-state simulations demonstrated that under overcast skies the evolution towards a deep, well-mixed ABL may take place through the merging of two mixed layers one related to mostly shear-driven surface mixing and the other to buoyancy-driven top-down mixing due to cloud-top radiative cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Alam J. A. Curry (1997) ArticleTitle‘Determination of Surface Turbulent Fluxes Over Leads in Arctic Sea Ice’ J. Geophys. Res. 102 3331–3344 Occurrence Handle10.1029/96JC03606

    Article  Google Scholar 

  • M. Alestalo H. Savijärvi (1985) ArticleTitle‘Mesoscale Circulations in a Hydrostatic Model: Coastal Convergence and Orographic Lifting’ Tellus 37A 156–162

    Google Scholar 

  • E. L. Andreas (1987) ArticleTitle‘A Theory For the Scalar Roughness and the Scalar Transfer Coefficients Over Snow and Sea Ice’ Boundary-Layer Meteorol. 38 159–184 Occurrence Handle10.1007/BF00121562

    Article  Google Scholar 

  • E. L. Andreas C. A. Paulson R. M. Williams R. W. Lindsay J. A. Businger (1979) ArticleTitle‘The Turbulent Heat Flux from Arctic Leads’ Boundary-Layer Meteorol. 17 57–91 Occurrence Handle10.1007/BF00121937

    Article  Google Scholar 

  • Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P. O. G.: 1999, ‘An Overview of the SHEBA Atmospheric Flux Program’, in Fifth Conference on Polar Meteorology and Oceanography, Dallas, TX, January 10–15, 1999, American Meteorological Society, Boston, MA, pp. 550–555 (preprint).

  • T. J. Bennett SuffixJr. K. Hunkins (1986) ArticleTitle‘Atmospheric Boundary Layer Modification in the Marginal Ice Zone’ J. Geophys. Res. 91 13033–13044

    Google Scholar 

  • G. Birnbaum C. Lüpkes (2002) ArticleTitle‘A new Parameterization of Surface Drag in the Marginal Sea Ice Zone’ Tellus 54A 107–123

    Google Scholar 

  • R. H. Bourke R. P. Garrett (1986) ArticleTitle‘Sea Ice Thickness Distribution in the Arctic Ocean’ Cold Reg. Sci. Techn. 13 259–280

    Google Scholar 

  • B. Brümmer S. Thiemann (2002) ArticleTitle‘The Atmospheric Boundary Layer in an Arctic Wintertime On-ice Air Flow’ Boundary-Layer Meteorol. 104 53–72

    Google Scholar 

  • B. Brümmer B. Busack H. Hoeber (1994) ArticleTitle‘Boundary-layer Observations Over Water and Arctic Sea Ice During On-ice Air Flow’ Boundary-Layer Meteorol. 68 75–108

    Google Scholar 

  • B. Cheng T. Vihma (2002) ArticleTitle‘Modelling of Sea Ice Thermodynamics During Warm-air Advection’ J. Glaciol. 48 425–438

    Google Scholar 

  • C. Drüe G. Heinemann (2001) ArticleTitle‘Airborne Investigation of Arctic Boundary-layer Fronts over the Marginal Ice Zone of the Davis Strait’ Boundary-Layer Meteorol. 101 261–292

    Google Scholar 

  • C. W. Fairall R. Markson (1987) ArticleTitle‘Mesoscale Variations in Surface Stress, Heat Fluxes, and Drag Coefficient in the Marginal Ice zone during the 1983 Marginal Ice Zone Experiment’ J. Geophys. Res. 92 6921–6932

    Google Scholar 

  • D. Freese (1999) Solar and Terrestrial Radiation Interaction between Arctic Sea Ice and Clouds Alfred-Wegener-Institute for Polar and Marine Research Bremerhaven, Germany 116

    Google Scholar 

  • T. Garbrecht C. Lüpkes J. Hartmann M. Wolff (2002) ArticleTitle‘Atmospheric Drag Coefficients over Sea Ice – Validation of a Parameterization Concept’ Tellus 54A 205–219

    Google Scholar 

  • P. S. Guest K. L. Davidson (1994) ‘Factors Affecting Variations of Snow Surface Temperature and Air Temperature over Sea Ice in Winter’ O. M. Johannessen R. Muench J. E. Overland (Eds) The Polar Oceans and Their Role in Shaping the Global Environment, Nansen Centennial Volume, Geophysical Monograph Series NumberInSeriesVol. 85 American Geophysical Union WashingtonDC 435–442

    Google Scholar 

  • P. S. Guest J. W. Glendening K. L. Davidson (1995) ArticleTitle‘An Observational and Numerical Study of Wind Stress Variations within Marginal Ice Zones’ J. Geophys. Res. 100 10887–10904 Occurrence Handle10.1029/94JC03391

    Article  Google Scholar 

  • J. Hartmann C. Kottmeier S. Raasch (1997) ArticleTitle‘Roll Vortices and Boundary-layer Development during a Cold Air Outbreak’ Boundary-Layer Meteorol. 84 45–65 Occurrence Handle10.1023/A:1000392931768

    Article  Google Scholar 

  • Hartmann J., Albers F., Argentini S., Bochert A., Bonafe U., Cohrs W., Conidi A., Freese, D., Georgiadis, T., Ippoliti, A., Kaleschke, L., Lüpkes, C., Maixner, U., Mastrantonio, G., Ravegnani, F., Reuter, A., Trivellone, G., and Viola, A.: 1999, ‘Arctic Radiation and Turbulence Interaction Study (ARTIST). Rep. Polar Res. 305, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany, 81 pp.

  • P. F. Hein R. A. Brown (1988) ArticleTitle‘Observations of Longitudinal Roll Vortices during Arctic Cold Air Outbreaks Over Open Water’ Boundary-Layer Meteorol. 45 177–199 Occurrence Handle10.1007/BF00120822

    Article  Google Scholar 

  • Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S., and Moritz, R. E.: 2002, ‘An Annual Cycle of Arctic Surface Cloud Forcing at SHEBA. J. Geophys. Res. 107, 8039, doi: 10.1029/2000JC000439.

  • R. E. Jordan E. L. Andreas A. P. Makshtas (1999) ArticleTitle‘Heat Budget of Snow-covered Sea Ice at North Pole 4’ J. Geophys. Res. 104 7785–7806 Occurrence Handle10.1029/1999JC900011

    Article  Google Scholar 

  • C. Kottmeier (Eds) (1996) User Handbook for the Polar 2 and Polar 4 Research Aircraft Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany 46

    Google Scholar 

  • C. Lüpkes K. H. Schlünzen (1996) ArticleTitle‘Modelling the Arctic Convective Boundary-Layer with Different Turbulence Parameterizations’ Boundary-Layer Meteorol. 79 107–130

    Google Scholar 

  • A. P. Makshtas (1991) The Heat Budget of Arctic Ice in the Winter Int Glaciol. Soc. Cambridge, England 77

    Google Scholar 

  • J. -J. Morcrette (1991) ArticleTitle‘Radiation and Cloud Radiative Properties in the ECMWF Forecasting System’ J. Geophys. Res. 96 9121–9132

    Google Scholar 

  • P. Q. Olsson J. Y. Harrington (2000) ArticleTitle‘Dynamics and Energetics of the Cloudy Boundary Layer in Simulations of off-Ice Flow in the Marginal Ice Zone’ J. Geophys. Res. 105 11889–11899

    Google Scholar 

  • J. E. Overland P. S. Guest (1991) ArticleTitle‘The Arctic Snow and Air Temperature Budget over Sea Ice During Winter’ J. Geophys. Res. 96 4651–4662

    Google Scholar 

  • J. E. Overland P. Turet (1994) ‘Variability of the Atmospheric Energy Flux Across 70°N Computed from the GFDL data Set’ O. M. Johannessen R. Muench J. E. Overland (Eds) The Polar Oceans and Their Role in Shaping the Global Environment, Nansen Centennial Volume, Geophysical Monograph Series NumberInSeriesVol. 85 American Geophysical Union Washington, DC 313–325

    Google Scholar 

  • Persson, P. O. G., Fairall, C., Andreas, E. L., Guest, P. S., and Perovich, D. K.: 2002, ‘Measurements Near the Atmospheric Surface Flux Group Tower at SHEBA: Near-Surface Conditions and Surface Energy Budget. J. Geophys. Res. 107, 9045, doi: 10.1029/2000JC000705.

  • J. O. Pinto (1998) ArticleTitle‘Autumnal Mixed-phase Cloudy Boundary Layers in the Arctic’ J. Atmos. Sci. 55 2016–2038 Occurrence Handle10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2

    Article  Google Scholar 

  • Pinto, J. O., Alam, A., Maslanik, J. A., Curry, J. A., and Stone, R. S.: 2003, ‘Surface Characteristics and Atmospheric Footprint of Springtime Arctic Leads at SHEBA’, J. Geophys. Res. 108, 8051, doi: 10.1029/2000JC000473.

  • H. Savijärvi (1991) ArticleTitle‘The United States Great Plains Diurnal ABL Variation and the Nocturnal Low-level Jet’ Mon. Wea. Rev. 119 833–840

    Google Scholar 

  • H. Savijärvi (1997) ArticleTitle‘Diurnal winds around Lake Tanganyika’ Quart. J. Roy. Meteorol. Soc. 123 901–918

    Google Scholar 

  • H. Savijärvi T. Amnell (2001) ArticleTitle‘High Resolution Flight Observations and Numerical Simulations: Horizontal Variability in the Wintertime Boreal Boundary Layer’ Theor. Appl. Climatol. 70 245–252

    Google Scholar 

  • H. Savijärvi J. Kauhanen (2001) ArticleTitle‘High Resolution Numerical Simulations of Temporal and Vertical Variability in the Stable Wintertime Boreal Boundary Layer: A Case Study’ Theor. Appl. Climatol. 70 97–103

    Google Scholar 

  • H. Savijärvi A. Arola P. Räisänen (1997) ArticleTitle‘Shortwave Optical Properties of Precipitating Waterclouds’ Quart. J. Roy. Meteorol. Soc. 123 883–899

    Google Scholar 

  • H. Savijärvi P. Räisänen (1998) ArticleTitle‘Longwave Optical Properties of Water Clouds and Rain’ Tellus 50 1–11

    Google Scholar 

  • R. C. Schnell R. G. Barry M. W. Miles E. L. Andreas L. F. Radke C. A. Brock M. P. McCormick J. L. Moore (1989) ArticleTitle‘Lidar Detection of Leads in Arctic Sea Ice’ Nature 339 530–532 Occurrence Handle10.1038/339530a0

    Article  Google Scholar 

  • M. C. Serreze J. A. Maslanik M. C. Rehder R. C. Schnell J. D. Kahl E. L. Andreas (1992) ArticleTitle‘Theoretical Heights of Buoyant Convection Above Open Leads in the Winter Arctic Pack Ice Cover’ J. Geophys. Res. 97 9411–9422 Occurrence Handle10.1029/92JC00688

    Article  Google Scholar 

  • Sturm, M., Perovich, D. K., and Holmgren, J.: 2002, ‘Thermal Conductivity and Heat Transfer Through the Snow on the Ice of the Beaufort Sea’, J. Geophys. Res. 107, doi: 10.1029/2000JC000409.

  • T. Uttal et al. (2002) ArticleTitle‘The Surface Heat Budget of the Arctic Ocean’ Bull. Amer. Meteorol. Soc. 83 255–276

    Google Scholar 

  • T. Vihma (1995) ArticleTitle‘Subgrid Parameterization of Surface Heat and Momentum Fluxes over Polar Oceans’ J. Geophys. Res. 100 22625–22646 Occurrence Handle10.1029/95JC02498

    Article  Google Scholar 

  • T. Vihma B. Brümmer (2002) ArticleTitle‘Observations and Modelling of On-Ice and Off-ice Air Flows over the Northern Baltic Sea’ Boundary-Layer Meteorol. 103 1–27 Occurrence Handle10.1023/A:1014566530774

    Article  Google Scholar 

  • T. Vihma C. Kottmeier (2000) ArticleTitle‘A Modelling Approach for Optimizing Flight Patterns in Airborne Meteorological Measurements’ Boundary-Layer Meteorol. 95 211–230 Occurrence Handle10.1023/A:1002634613282

    Article  Google Scholar 

  • T. Vihma J. Hartmann C. Lüpkes (2003) ArticleTitle‘A Case Study of an On-ice Air Flow over the Arctic Marginal Sea Ice Zone’ Boundary-Layer Meteorol. 107 189–217 Occurrence Handle10.1023/A:1021599601948

    Article  Google Scholar 

  • S. Wang Q. Wang R. E. Jordan P. O. G. Persson (2001) ArticleTitle‘Interactions among Longwave Radiation of Clouds, Turbulence, and Snow Surface Temperature in the Arctic: a model sensitivity study’ J. Geophys. Res. 106 15323–15333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Vihma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vihma, T., Lüpkes, C., Hartmann, J. et al. ‘Observations and Modelling of Cold-air Advection over Arctic Sea Ice’. Boundary-Layer Meteorol 117, 275–300 (2005). https://doi.org/10.1007/s10546-004-6005-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-6005-0

Keywords

Navigation