Skip to main content

Advertisement

Log in

Sulphate, dissolved organic carbon, nutrients and terminal metabolic products in deep pore waters of an intertidal flat

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

This study addresses deep pore water chemistry in a permeable intertidal sand flat at the NW German coast. Sulphate, dissolved organic carbon (DOC), nutrients, and several terminal metabolic products were studied down to 5 m sediment depth. By extending the depth domain to several meters, insights into the functioning of deep sandy tidal flats were gained. Despite the dynamic sedimentological conditions in the study area, the general depth profiles obtained in the relatively young intertidal flat sediments of some metres depth are comparable to those determined in deep marine surface sediments. Besides diffusion and lithology which control pore water profiles in most marine surface sediments, biogeochemical processes are influenced by advection in the studied permeable intertidal flat sediments. This is supported by the model setup in which advection has to be implemented to reproduce pore water profiles. Water exchange at the sediment surface and in deeper sediment layers converts these permeable intertidal sediments into a “bio-reactor” where organic matter is recycled, and nutrients and DOC are released. At tidal flat margins, a hydraulic gradient is generated, which leads to water flow towards the creekbank. Deep nutrient-rich pore waters escaping at tidal flat margins during low tide presumably form a source of nutrients for the overlying water column in the study area. Significant correlations between the inorganic products of terminal metabolism (NH4 + and PO4 3−) and sulphate depletion suggest sulphate reduction to be the dominant pathway of anaerobic carbon remineralisation. Pore water concentrations of sulphate, ammonium, and phosphate were used to elucidate the composition of organic matter degraded in the sediment. Calculated C:N and C:P ratios were supported by model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alperin MJ, Albert DB, Martens CS (1994) Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment. Geochim Cosmochim Acta 58:4909–4930. doi:10.1016/0016-7037(94)90221-6

    Article  Google Scholar 

  • Baldock JA, Masiello CA, Gélinas Y, Hedges JI (2004) Cycling an decomposition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64. doi:10.1016/j.marchem.2004.06.016

    Article  Google Scholar 

  • Beck M, Dellwig O, Kolditz K, Freund H, Liebezeit G, Schnetger B et al (2007) In situ pore water sampling in deep intertidal flat sediments. Limnol Oceanogr Methods 5:136–144

    Google Scholar 

  • Beck M, Dellwig O, Liebezeit G, Schnetger B, Brumsack H-J (2008) Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediment. Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2008.04.007

  • Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M (2006a) Nutrient release from an exposed intertidal sand flat. Mar Ecol Prog Ser 316:35–51. doi:10.3354/meps316035

    Article  Google Scholar 

  • Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M (2006b) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326:61–76. doi:10.3354/meps326061

    Article  Google Scholar 

  • Böttcher ME, Rusch A, Höpner T, Brumsack H-J (1997) Stable sulfur isotope effects related to local intense sulfate reduction in a tidal sandflat (Southern North Sea): results from loading experiments. Isotopes Environ Health Stud 33:109–129. doi:10.1080/10256019708036345

    Article  Google Scholar 

  • Böttcher ME, Oelschläger B, Höpner T, Brumsack H-J, Rullkötter J (1998) Sulfate reduction related to the early diagenetic degradation of organic matter and ‘black spot’ formation in tidal sandfalts of the German Wadden Sea (southern North Sea): stable isotope (13C, 34S, 18O) and other geochemical results. Org Geochem 29:1517–1530. doi:10.1016/S0146-6380(98)00124-7

    Article  Google Scholar 

  • Böttcher ME, Hespenheide B, Llobet-Brossa E, Beardsley C, Larsen O, Schramm A et al (2000) The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Cont Shelf Res 20:1749–1769. doi:10.1016/S0278-4343(00)00046-7

    Article  Google Scholar 

  • Boudreau BP (1992) A kinetic model for microbic organic-matter decomposition in marine sediments. FEMS Microbiol Ecol 102:1–14. doi:10.1111/j.1574-6968.1992.tb05789.x

    Article  Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implications. Springer, Berlin

    Google Scholar 

  • Caetano M, Falcão M, Bebianno MJ (1997) Tidal flushing of ammonium, iron and manganese from inter-tidal sediment pore waters. Mar Chem 58:203–211. doi:10.1016/S0304-4203(97)00035-2

    Article  Google Scholar 

  • Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB et al (1993a) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40. doi:10.1016/0025-3227(93)90147-N

    Article  Google Scholar 

  • Canfield DE, Thamdrup B, Hansen JW (1993b) The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulphate reduction. Geochim Cosmochim Acta 57:3867–3883. doi:10.1016/0016-7037(93)90340-3

    Article  Google Scholar 

  • Chang TS, Flemming BW, Tilch E, Bartholomä A, Wöstmann R (2006a) Late Holocene stratigraphic evolution of a back-barrier tidal basin in the East Frisian Wadden Sea, southern North Sea: transgressive deposition and its preservation potential. Facies 52:329–340. doi:10.1007/s10347-006-0080-2

    Article  Google Scholar 

  • Chang TS, Bartholomä A, Flemming BW (2006b) Seasonal dynamics of fine-grained sediments in a back-barrier tidal basin of the German Wadden Sea (Southern North Sea). J Coast Res 22:328–338. doi:10.2112/03-0085.1

    Article  Google Scholar 

  • Charette MA, Sholkovitz ER (2006) Trace element cycling in a subterranean estuary: Part 2 Geochemistry of the pore water. Geochim Cosmochim Acta 70:811–826. doi:10.1016/j.gca.2005.10.019

    Article  Google Scholar 

  • Christiansen C, Vølund G, Lund-Hansen LC, Bartholdy J (2006) Wind influence on tidal flat sediment dynamics: field investigations in the Ho Bugt, Danish Wadden Sea. Mar Geol 235:75–86. doi:10.1016/j.margeo.2006.10.006

    Article  Google Scholar 

  • De Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JEE et al (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr 50:113–127

    Google Scholar 

  • Delafontaine MT, Bartholomä A, Flemming BW, Kurmis R (1996) Volume-specific dry POC mass in surficial intertidal sediments: a comparison between biogenic muds and adjacent sand flats. Senckenb Marit 26:167–178

    Google Scholar 

  • Dellwig O, Hinrichs J, Hild A, Brumsack H-J (2000) Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: a geochemical approach. J Sea Res 44:195–208. doi:10.1016/S1385-1101(00)00051-4

    Article  Google Scholar 

  • Dellwig O, Bosselmann K, Kölsch S, Hentscher M, Hinrichs J, Böttcher ME et al (2007) Sources and fate of manganese in a tidal basin of the German Wadden Sea. J Sea Res 57:1–18. doi:10.1016/j.seares.2006.07.006

    Article  Google Scholar 

  • Flemming BW, Davis RA Jr (1994) Holocene evolution, morphodynamics and sedimentology of the Spiekeroog barrier island system (Southern North Sea). Senckenb Marit 24:117–155

    Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D et al (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090. doi:10.1016/0016-7037(79)90095-4

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. Wiley-VCH, New York

    Google Scholar 

  • Gribsholt B, Kristensen E (2003) Benthic metabolism and sulfur cycling along an inundation gradient in a tidal spartina anglica salt marsh. Limnol Oceanogr 48:2151–2162

    Google Scholar 

  • Grunwald M, Dellwig O, Liebezeit G, Schnetger B, Reuter R, Brumsack H-J (2007) A novel time-series station in the Wadden Sea (NW Germany): first results on continuous nutrient and methane measurements. Mar Chem 107:411–421. doi:10.1016/j.marchem.2007.04.003

    Article  Google Scholar 

  • Hensen C, Zabel M, Pfeifer K, Schwenk T, Kasten S, Riedinger N et al (2003) Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim Cosmochim Acta 67:2631–2647. doi:10.1016/S0016-7037(03)00199-6

    Article  Google Scholar 

  • Howarth RW, Jørgensen BB (1984) Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO4 2− reduction measurements. Geochim Cosmochim Acta 48:1807–1818. doi:10.1016/0016-7037(84)90034-6

    Article  Google Scholar 

  • Howes BL, Goehringer DD (1994) Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh. Mar Ecol Prog Ser 114:289–301. doi:10.3354/meps114289

    Article  Google Scholar 

  • Huettel M, Rusch A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45:534–549

    Google Scholar 

  • Huettel M, Ziebis W, Forster S (1996) Flow-induced uptake of particulate matter in permeable sediments. Limnol Oceanogr 41:309–322

    Google Scholar 

  • Huettel M, Ziebis W, Forster S, Luther GWIII (1998) Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim Cosmochim Acta 62:613–631. doi:10.1016/S0016-7037(97)00371-2

    Article  Google Scholar 

  • Jahnke RA, Alexander CR, Kostka JE (2003) Advective pore water input of nutrients to the Satilla river estuary, Georgia, USA. Estuar Coast Shelf Sci 56:641–653. doi:10.1016/S0272-7714(02)00216-0

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed–the role of sulphate reduction. Nature 296:643–645. doi:10.1038/296643a0

    Article  Google Scholar 

  • Kristensen E, Bodenbender J, Jensen MH, Rennenberg H, Jensen KM (2000) Sulfur cycling of intertidal Wadden Sea sediments (Königshafen, Island of Sylt, Germany): sulfate reduction and sulfur gas emission. J Sea Res 43:93–104. doi:10.1016/S1385-1101(00)00007-1

    Article  Google Scholar 

  • Kuwae T, Kibe E, Nakamura Y (2003) Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay. Estuar Coast Shelf Sci 57:929–940. doi:10.1016/S0272-7714(02)00423-7

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory U.S. Department of Energy, Oak Ridge

    Google Scholar 

  • Liebezeit G, Behrends B, Kraul T (1996) Variability of nutrients and particulate matter in backbarrier tidal flats of the East Frisian Wadden Sea. Senckenbergiana 26:195–202

    Google Scholar 

  • Lunau M, Lemke A, Dellwig O, Simon M (2006) Physical and biogeochemical controls of microaggregate dynamics in a tidally affected coastal ecosystem. Limnol Oceanogr 51:847–859

    Google Scholar 

  • Magni P, Montani S (2006) Seasonal patterns of pore-water nutrients, benthic chlorophyll a and sedimentary AVS in a macrobenthos-rich tidal flat. Hydrobiologia 571:297–311. doi:10.1007/s10750-006-0242-9

    Article  Google Scholar 

  • Mäkelä K, Tuominen L (2003) Pore water nutrient profiles and dynamics in soft bottoms of the northern Baltic Sea. Hydrobiologia 492:43–53. doi:10.1023/A:1024809710854

    Article  Google Scholar 

  • Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol 114:347–363. doi:10.1016/0009-2541(94)90063-9

    Article  Google Scholar 

  • Moeslund L, Thamdrup B, Jørgensen BB (1994) Sulfur and iron cycling in a coastal sediment: radiotracer studies and seasonal dynamics. Biogeochemistry 27:129–152

    Google Scholar 

  • Murray LG, Mudge SM, Newton A, Icely JD (2006) The effect of benthic sediments on dissolved nutrient concentrations and fluxes. Biogeochemistry 81:159–178. doi:10.1007/s10533-006-9034-6

    Article  Google Scholar 

  • Precht E, Huettel M (2004) Rapid wave-driven advective pore water exchange in a permeable coastal sediment. J Sea Res 51:93–107. doi:10.1016/j.seares.2003.07.003

    Article  Google Scholar 

  • Precht E, Franke U, Polerecky L, Huettel M (2004) Oxygen dynamics in permeable sediments with wave driven pore water exchange. Limnol Oceanogr 49:693–705

    Google Scholar 

  • Rusch A, Huettel M (2000) Advective particle transport into permeable sediments-evidence form experiments in an intertidal sandflat. Limnol Oceanogr 45:525–533

    Google Scholar 

  • Rusch A, Töpken H, Böttcher ME, Höpner T (1998) Recovery from black spots: results of a loading experiment in the Wadden Sea. J Sea Res 40:205–219. doi:10.1016/S1385-1101(98)00030-6

    Article  Google Scholar 

  • Rusch A, Forster S, Huettel M (2001) Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water-sediment interface. Biogeochemistry 55:1–27. doi:10.1023/A:1010687322291

    Article  Google Scholar 

  • Rusch A, Huettel M, Wild C, Reimers CE (2006) Benthic oxygen consumption and organic matter turnover in organic-poor, permeable shelf sands. Aquat Geochem 12:1–19. doi:10.1007/s10498-005-0784-x

    Article  Google Scholar 

  • Sarazin G, Michard G, Prevot F (1999) A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res 33:290–294. doi:10.1016/S0043-1354(98)00168-7

    Article  Google Scholar 

  • Schnetger B, Hinrichs J, Dellwig O, Shaw T, Brumsack H-J (2001) The significance of radionuclides and trace elements in a back barrier tidal area: results from the German Wadden Sea. In: Inaba J, Hisamatsu S, Ohtsuka Y (eds) Proceedings of the international workshop on distribution and speciation of radionuclides in the environment, Rokkasho, Aomori, Japan, October 2000, pp 99–106

  • Sholkovitz E (1973) Interstitial water chemistry of the Santa Barbara Basin sediments. Geochim Cosmochim Acta 37:2043–2073. doi:10.1016/0016-7037(73)90008-2

    Article  Google Scholar 

  • Sørensen J, Jørgensen BB, Revsbech NP (1979) A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microb Ecol 5:105–115. doi:10.1007/BF02010501

    Article  Google Scholar 

  • Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41:1629–1650

    Google Scholar 

  • Thamdrup B, Finster K, Würgler Hansen J, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108

    Google Scholar 

  • Wedepohl KH (1971) Environmental influence on the chemical composition of shales and clays. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and chemistry of the earth, vol 8. Pergamon, Oxford, pp 305–333

    Google Scholar 

  • Weston NB, Porubsky WP, Samarkin VA, Erickson M, Macavoy SE, Joye SB (2006) Porewater stoichiometry of terminal metabolic products, sulfate, and dissolved organic carbon and nitrogen in estuarine intertidal creek-bank sediments. Biogeochemistry 77:375–408. doi:10.1007/s10533-005-1640-1

    Article  Google Scholar 

  • Whiting GJ, Childers DL (1989) Subtidal advective water flux as a potentially important nutrient input to Southeastern U.S.A. saltmarsh estuaries. Estuar Coast Shelf Sci 28:417–431. doi:10.1016/0272-7714(89)90089-9

    Article  Google Scholar 

  • Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2006a) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol. doi:10.1111/j.1574–6941.2006.00225.x

  • Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B (2006b) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719. doi:10.1111/j.1462-2920.2005.00949.x

    Article  Google Scholar 

  • Wilson AM, Gardner LR (2006) Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations. Water Resour Res 42:W01405. doi:10.1029/2005WR004302

    Article  Google Scholar 

  • Wirtz K (2003) Control of biochemical cycling by mobility and metabolic strategies of microbes in the sediments: an integrated model study. FEMS Microbiol Ecol 46:295–306. doi:10.1016/S0168-6496(03)00196-X

    Article  Google Scholar 

  • Ziebis W, Huettel M, Forster S (1996) Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar Ecol Prog Ser 140:227–237. doi:10.3354/meps140227

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Malte Groh for his valuable assistance during all sampling campaigns and Carola Lehners and Eleonore Gründken for their assistance during laboratory work. Furthermore, we wish to thank the Terramare Research Centre for providing transportation to the sampling site by boat and especially Helmo Nicolai for his help regarding technical questions. We thank Joris M. Gieskes for his critical reading of a previous version of this manuscript. Finally, we thank the Associate editor R.K. Wieder and two anonymous reviewers for their comments, which greatly improved the manuscript. We gratefully acknowledge the financial support by the German Science Foundation (DFG, BR 775/14-4) within the framework of the Research Group ‘BioGeoChemistry of Tidal Flats’ (FOR 432/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, M., Dellwig, O., Holstein, J.M. et al. Sulphate, dissolved organic carbon, nutrients and terminal metabolic products in deep pore waters of an intertidal flat. Biogeochemistry 89, 221–238 (2008). https://doi.org/10.1007/s10533-008-9215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9215-6

Keywords

Navigation