Skip to main content
Log in

Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The global transhipment of ballast water and associated flora and fauna by cargo vessels has increased dramatically in recent decades. Invertebrate species are frequently carried in ballast water and sediment, although identification of diapausing eggs can be extremely problematic. Here we test the application of DNA barcoding using mitochondrial cytochrome c oxidase subunit I and 16S rDNA to identify species from diapausing eggs collected in ballast sediment of ships. The accuracy of DNA barcoding identification was tested by comparing results from the molecular markers against each other, and by comparing barcoding results to traditional morphological identification of individuals hatched from diapausing eggs. Further, we explored two public genetic databases to determine the broader applicability of DNA barcodes. Of 289 diapausing eggs surveyed, sufficient DNA for barcoding was obtained from 96 individuals (33%). Unsuccessful DNA extractions from 67% of eggs in our study were most likely due to degraded condition of eggs. Of 96 eggs with successful DNA extraction, 61 (64%) were identified to species level, while 36% were identified to possible family/order level. Species level identifications were always consistent between methodologies. DNA barcoding was suitable for a wide range of taxa, including Branchiopoda, Copepoda, Rotifera, Bryozoa and Ascidia. Branchiopoda and Copepoda were respectively the best and worst represented groups in genetic databases. Though genetic databases remain incomplete, DNA barcoding resolved nearly double the number of species identified by traditional taxonomy (19 vs. 10). Notorious invaders are well represented in existing databases, rendering these NIS detectable using molecular methods. DNA barcoding provides a rapid and accurate approach to identification of invertebrate diapausing eggs that otherwise would be very difficult to identify.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamowicz SJ, Petrusek A, Colbourne JK, Hebert PDN, Witt JDS (2009) The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Mol Phylogenet Evol 50:423–436

    Article  PubMed  Google Scholar 

  • Bailey SA, Duggan IC, van Overdijk CDA, Jenkins PT, MacIsaac HJ (2003) Viability of invertebrate diapausing stages collected from residual ballast sediment of transoceanic vessels. Limnol Oceanogr 48:1701–1710

    Article  Google Scholar 

  • Bailey SA, Duggan IC, Jenkins PT, MacIsaac HJ (2005) Invertebrate resting stages in residual ballast sediment of transoceanic ships. Can J Fish Aquat Sci 62:1090–1103

    Article  Google Scholar 

  • Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491

    Article  CAS  Google Scholar 

  • Bax N, Carlton JT, Mathews-Amos A, Haedrich RL, Howarth FG, Purcell JE, Rieser A, Gray A (2001) The control of biological invasions in the world’s oceans. Conserv Biol 15:1234–1246

    Article  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Briski E, Van Stappen G, Bossier P, Sorgeloos P (2008) Laboratory production of early hatching Artemia sp. cysts by selection. Aquaculture 282:19–25

    Article  Google Scholar 

  • Briski E, Bailey SA, Cristescu ME, MacIsaac HJ (2010) Efficacy of ‘saltwater flushing’ in protecting the Great Lakes from biological invasions by invertebrate eggs in ships’ ballast sediment. Freshwater Biol 55(11):2414–2424. doi:10.1111/j.1365-2427.2010.02449.x

    Google Scholar 

  • Brown B, Emberson RM, Paterson AM (1999) Mitochondrial COI and II provide useful markers for Weiseana (Lepidoptera, Hepialidae) species identification. Bull Entomol Res 89:287–294

    Article  Google Scholar 

  • Bucklin A, Guarnieri M, Hill RS, Bentley AM, Kaartvedt S (1999) Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. Hydrobiologia 401:239–254

    Article  CAS  Google Scholar 

  • Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ (2003) Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343

    CAS  Google Scholar 

  • Byers JE, Reichard S, Randall JM, Parker IM, Smith CS, Lonsdale WM, Atkinson IAE, Seasted TR, Williamson M, Chornesky E, Hayes D (2002) Directing research to reduce the impacts of nonindigenous species. Conserv Biol 16:630–640

    Article  Google Scholar 

  • Carlton JT (2009) Deep invasion ecology and the assembly of communities in historical time. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems: ecological, management, and geografic perspectives. Springer, Berlin, pp 13–56

    Chapter  Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82

    Article  Google Scholar 

  • Carvalho GR, Wolf HG (1989) Resting eggs of lake-Daphnia I. Distribution, abundance and hatching of eggs collected from various depths in lake sediment. Freshw Biol 22:459–470

    Article  Google Scholar 

  • Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037

    Article  Google Scholar 

  • Costa FO, de Waard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert PDN (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295

    Article  CAS  Google Scholar 

  • Dahms HU (1995) Dormancy in the copepoda––an overview. Hydrobiologia 306:199–211

    Article  Google Scholar 

  • Darling JA, Blum MJ (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biol Invasions 9:751–765

    Article  Google Scholar 

  • Duggan IC, van Overdijk CDA, Bailey SA, Jenkins PT, Limen H, MacIsaac HJ (2005) Invertebrates associated with residual ballast water and sediments of cargo-carrying ships entering the Great Lakes. Can J Fish Aquat Sci 62:2463–2474

    Article  Google Scholar 

  • Duggan IC, Bailey SA, van Overdijk CDA, MacIsaac HJ (2006) Invasion risk of active and diapausing invertebrates from residual ballast in ships entering Chesapeake Bay. Mar Ecol Prog Ser 324:57–66

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  • Forró L, Korovchinsky NM, Kotov AA, Petrusek A (2008) Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595:177–184

    Article  Google Scholar 

  • Geller JB, Darling JA, Carlton JT (2010) Genetic perspectives on marine biological invasions. Annu Rev Mar Sci 2:367–393

    Article  Google Scholar 

  • Giangrande A (2003) Biodiversity, conservation, and the ‘Taxonomic impediment’. Aquatic Conserv: Mar Freshw Ecosyst 13:451–459

    Article  Google Scholar 

  • Gilbert JJ (2004) Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshw Biol 49:1505–1515

    Article  Google Scholar 

  • Gómez A, Carvalho GR, Lunt DH (2000) Phylogeography and regional endemism of a passively dispersing zooplankter: mitochondrial DNA variation in rotifer resting egg banks. Proc R Soc Lond B Biol Sci 267:2189–2197

    Article  Google Scholar 

  • Gómez A, Hughes RN, Wright PJ, Carvalho GR, Lunt DH (2007) Mitochondrial DNA phylogeography and mating compatibility reveal marked genetic structuring and speciation in the NE Atlantic bryozoans Celleporella hyalina. Mol Ecol 16:2173–2188

    Article  PubMed  Google Scholar 

  • Grice GD, Marcus NH (1981) Dormant eggs of marine copepods. Oceanogr Mar Biol Ann Rev 19:125–140

    Google Scholar 

  • Hairston NG (1996) Zooplankton egg banks as biotic reservoirs in changing environments. Limnol Oceanogr 41:1087–1092

    Article  Google Scholar 

  • Hajibabaei M, Singer GCA, Clare EL, Hebert PDN (2007) Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biol 5:24

    Article  PubMed  Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Article  Google Scholar 

  • Hebert PDN, Crease TJ (1980) Clonal co-existence in Daphnia pulex (Leydig): another planktonic paradox. Science 207:1363–1365

    Google Scholar 

  • Hebert PDN, Remigio EA, Colbourne JK, Taylor DJ, Wilson CC (2002) Accelerated molecular evolution in halophilic crustaceans. Evolution 56:909–926

    PubMed  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    Article  CAS  Google Scholar 

  • Imaizumi K, Akutsu T, Miyasaka S, Yoshino M (2007) Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. Int J Legal Med 121:184–191

    Article  PubMed  Google Scholar 

  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    Article  CAS  Google Scholar 

  • Janzen DH, Hajibabaei M, Burns JM, Hallwachs W, Remigio E, Hebert PDN (2005) Wedding biodiversity inventory of a large complex Lepidoptera fauna with DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360:1835–1845

    Article  PubMed  CAS  Google Scholar 

  • Jarman SN, Elliott NG (2000) DNA evidence for morphological and cryptic Cenozoic speciations in the Anaspididae, ‘living fossils’ from the Triassic. J Evol Biol 13:624–633

    Article  Google Scholar 

  • Kiesling TL, Wilkinson E, Rabalais J, Ortner PB, McCabe MM, Fell JW (2002) Rapid identification of adult and naupliar stages of copepods using DNA hybridization methodology. Mar Biotechnol 4:30–39

    PubMed  CAS  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. FAO Fish Tech Pap Rome pp 1–8

  • Leppäkoski E, Gollasch S, Gruszka P, Ojaveer H, Olenin S, Panov V (2002) The Baltic––a sea of invaders. Can J Fish Aquat Sci 59:1175–1188

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910

    Article  Google Scholar 

  • Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for US policy and management. Ecol Appl 16:2035–2054

    Article  PubMed  Google Scholar 

  • Lopez JV, Culver M, Stephens JC, Johnson WE, O’Brien SJ (1997) Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol Biol Evol 14:277–286

    PubMed  CAS  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422

    Article  PubMed  Google Scholar 

  • Monaghan MT, Balke M, Gregory TR, Volger AP (2005) DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philos Trans R Soc Lond B Biol Sci 360:1925–1933

    Article  PubMed  CAS  Google Scholar 

  • Montero-Pau J, Gómez A, Muñoz J (2008) Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol Oceanogr Methods 6:218–222

    Article  CAS  Google Scholar 

  • Palumbi S (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis D, Mable B, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, pp 205–247

    Google Scholar 

  • Pauwels K, Stoks R, Verbiest A, De Meester L (2007) Biochemical adaptation for dormancy in subitaneous and dormant eggs of Daphnia magna. Hydrobiologia 594:91–96

    Article  CAS  Google Scholar 

  • Puillandre N, Strong EE, Bouchet P, Boisselier M-C, Couloux A, Samadi S (2009) Identifying gastropod spawn from DNA barcodes: possible but not yet practible. Mol Ecol Resour 9:1311–1321

    Article  Google Scholar 

  • Ricciardi A (2006) Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Divers Distrib 12:425–433

    Article  Google Scholar 

  • Rombouts I, Beaugrand G, Ibaňez F, Gasparini S, Chiba S, Legendre L (2009) Global latitudinal variations in marine copepod diversity and environmental factors. Proc R Soc B 276(1670):3053–3062

    Article  PubMed  Google Scholar 

  • Rugman-Jones PF, Hoddle MS, Mound LA, Stouthamer R (2006) Molecular identification key for pest species of Scirtothrips (Thysanoptera: Thripidaae). J Econ Entomol 99:1813–1819

    Article  PubMed  CAS  Google Scholar 

  • Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes and biases. Annu Rev Ecol Syst 31:481–531

    Article  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. Thomson Learning, USA

    Google Scholar 

  • Schubart CD, Santl T, Koller P (2008) Mitochondrial patterns of intra- and interspecific differentiation among endemic freshwater crabs of ancient lakes in Sulawesi. Contrib Zool 77:83–90

    Google Scholar 

  • Schwartz SS, Hebert PDN (1987) Methods for the activation of the resting eggs of Daphnia. Freshw Biol 17:373–379

    Article  Google Scholar 

  • Shouche JS, Patole MS (2000) Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment from seven mosquito species. J Biosci 25:361–366

    Article  PubMed  CAS  Google Scholar 

  • Simberloff D (2009) We can eliminate invasions or live with them. Successful management projects. Biol Invasions 11:149–157

    Article  Google Scholar 

  • Simberloff D, Parker IM, Windle PN (2005) Introduced species policy, management, and future research needs. Front Ecol Environ 3:12–20

    Article  Google Scholar 

  • Sylvester F, MacIsaac HJ (2010) Is vessel hull fouling an invasion threat to the Great Lakes? Divers Distrib 16:132–143

    Article  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc Land B Biol Sci 360:1847–1857

    Article  CAS  Google Scholar 

  • Wong EH-K, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837

    Article  CAS  Google Scholar 

  • Wonham MJ, Carlton JT (2005) Trends in marine biological invasions at local and regional scales: the Northeast Pacific Ocean as a model system. Biol Invasions 7:369–392

    Article  Google Scholar 

  • Zhang D-X, Hewitt GM (1997) Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Mol Biol 6:143–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Shipping Federation of Canada and the multiple shipping companies that facilitated access to vessels, and our ballast sampling teams: C. van Overdijk, A.M. Weise, O. Casas-Monroy, N. Simard, J.-Y. Couture, M. Huot and Dr. C. McKindsey. We are grateful for taxonomic assistance from Drs. S.I. Dodson, J.R. Cordell and P. Hudson, and laboratory support from R. Tedla, S. Ross and H. Coker. Great thanks to Drs. Aibin Zhan and Francisco Sylvester for commenting on an early version of the manuscript. Comments from two anonymous reviewers are gratefully acknowledged. This research was supported by NSERC’s Canadian Aquatic Invasive Species Network, Transport Canada, Fisheries and Oceans Canada, by NSERC Discovery Grants to MEC, SAB and HJM, and by a DFO Invasive Species Research Chair to HJM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeta Briski.

Appendix

Appendix

See Table 4

Table 4 List of species identified by morphological methods and DNA barcodes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briski, E., Cristescu, M.E., Bailey, S.A. et al. Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biol Invasions 13, 1325–1340 (2011). https://doi.org/10.1007/s10530-010-9892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9892-7

Keywords

Navigation