Skip to main content
Log in

Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel Gram-negative, aerobic, non-motile and rod-shaped bacterium was isolated from Qurugöl Lake near Tabriz city. The bacterium grew chemoorganolheterotrophically and chemolithoautotrophically. However, photo-organoheterotrophic, photo-lithoautotrophic and fermentative growth could not be demonstrated. The presence of photosynthesis genes pufL and pufM was not shown and photosynthesis pigments were not formed. Strain RCRI19T grew without NaCl and tolerated up to 3 % NaCl. Growth occurred at pH 6–9 (optimum, pH 7) and 15–55 °C (optimum 40–45 °C). Vitamins were not required for growth. The major fatty acids are C18:1 ω7C, 11-methyl C18:1 ω7C, C18:0 3-OH. The predominant respiratory quinone is ubiquinone Q-10. The G+C content of genomic DNA is 65.9 mol%. Analysis of 16S rRNA sequences showed that strain RCRI19T has the highest similarities with uncultured environmental sequences followed by members of the genera Rhodobacter (≤95.75 %), Haematobacter (≤95.53 %), Gemmobacter (≤95.17 %) and Falsirhodobacter (94.60 %) in the family Rhodobacteraceae. DNA–DNA relatedness between strain RCRI19T and the closest phylogenetically related strain, Rhodobacter blasticus LMG 4305T, was 20 %. Based on its phenotypic and chemotaxonomic characteristics and considering that it does not form photosynthetic pigments and is unable to grow phototrophically, it is concluded that strain RCRI19T cannot be included into the genus Rhodobacter and any of the other related genera. Therefore, we propose to place the new bacterium into a new genus and species for which the name Tabrizicola aquatica gen. nov. and sp. nov. is proposed. The type strain is RCRI19T (=BCCM/LMG 25773= JCM 17277= KCTC 23724T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albuquerque L, Santos J, Travassos P, Nobre MF, Rainey FA, Wait R, Empadinhas N, Silva MT, da Costa MS (2002) Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl Environ Microbiol 68:2673–4266

    Google Scholar 

  • Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  PubMed  CAS  Google Scholar 

  • Chen W-M, Cho N-T, Huang W-C, Young C-C (2013) Description of Gemmobacter fontiphilus sp. nov., isolated from a freshwater spring, reclassification of Catellibacterium nectariphilum as Gemmobacter nectariphilus comb. nov., Catellibacterium changlense as Gemmobacter changlensis comb. nov., Catellibacterium aquatile as Gemmobacter aquaticus nom. nov., Catellibacterium caeni as Gemmobacter caeni comb. nov., Catellibacterium nanjingense as Gemmobacter nanjingensis comb. nov., and emended description of the genus Gemmobacter and of Gemmobacter aquatilis. Int J Syst Evol Microbiol 63:470–478

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  PubMed  CAS  Google Scholar 

  • Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J (2002) Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov., and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed  CAS  Google Scholar 

  • Corbin DR, Grebenok RJ, Ohnmeiss TE, Greenplate JT, Purcell JP (2001) Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol 126:1116–1128

    Article  PubMed  CAS  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family I. Rhodobacteraceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, pp 161–167

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Goris J, Suzuki K, De Vos P, Nakase T, Kersters K (1998) Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153

    Article  CAS  Google Scholar 

  • Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Appl Microbiol Biotechnol 5:123–127

    Article  Google Scholar 

  • Helsel LO, Hollis D, Steigerwalt AG, Morey RE, Jordan J, Aye T, Radosevic J, Jannat-Khah D, Thiry D, Lonsway DR, Patel JB, Daneshvar MI, Levett PN (2007) Identification of “Haematobacter”, a new genus of aerobic Gram-negative rods isolated from clinical specimens, and reclassification of Rhodobacter massiliensis as Haematobacter massiliensis comb. nov. J Clin Microbiol 45:1238–1243

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A, Ueda Y (1994) Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Syst Bacteriol 44:15–23

    Article  Google Scholar 

  • Imhoff JF (1984) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25:85–89

    Article  CAS  Google Scholar 

  • Imhoff JF (1991) Polar lipids and fatty acids in the genus Rhodobacter. Syst Appl Microbiol 14:228–234

    Article  CAS  Google Scholar 

  • Imhoff JF, Caumette P (2004) Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int J Syst Evol Microbiol 54:1415–1421

    Article  PubMed  Google Scholar 

  • Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic ‘purple nonsulfur bacteria’. Int J Syst Bacteriol 34:340–343

    Article  Google Scholar 

  • Karlson U, Dwyer DF, Hooper SW, Moore ER, Timmis KN, Eltis LD (1993) Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol 175:1467–1474

    PubMed  CAS  Google Scholar 

  • Kompantseva EI (1985) Rhodobacter euryhalinus sp. nov., a new halophilic purple bacterial species. Mikrobiologiia 54:974–982

    CAS  Google Scholar 

  • Macfaddin JF (2000) Biochemical tests for identification of medical bacteria. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G-C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nupur Vaidya B, Tanuku NR, Pinnaka AK (2013) Albirhodobacter marinus gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from sea shore water of Visakhapatnam, India. Antonie Van Leeuwenhoek 103:347–355

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3200–3221

    Google Scholar 

  • Srinivas TN, Kumar PA, Sasikala Ch, Ramana ChV, Imhoff JF (2007a) Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description if the genus Rhodobacter. Int J Syst Evol Microbiol 57:1984–1987

    Article  PubMed  CAS  Google Scholar 

  • Srinivas TN, Kumar PA, Sasikala Ch, Ramana ChV, Imhoff JF (2007b) Rhodovulum visakhapatnamense sp. nov. Int J Syst Evol Microbiol 57:1762–1764

    Article  PubMed  CAS  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition byreverse-phased high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tank M, Thiel V, Imhoff JF (2009) Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. Int Microbiol 12:175–185

    PubMed  CAS  Google Scholar 

  • Tarhriz V, Nematzadeh G, Mohamadzadeh F, Rahimi E, Hejazi MS (2011) Isolation and characterization of some aquatic bacteria from Qurugöl Lake in Azerbaijan under aerobic conditions. Adv Environ Biol 5:3173–3178

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Uchino Y, Hamada T, Yokota A (2002) Proposal of Pseudorhodobacter ferrugineus gen. nov., comb. Nov., for a non-phootosynthetic marine bacterium, Agrobacterium ferrugineum, related to the genus Rhodobacter. J Gen Appl Microbiol 48:309–319

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Kang SJ, Oh TK (2007) Donghicola eburneus gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 57:73–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been conducted in collaboration between Pharmaceutical Biotechnology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences and Rice and Citrus Research Institute, Sari Agricultural and Natural Resources University. The authors greatly thank Dr Cathrin Spröer (Deutsche Sammlung von Mikroorganismen und Zellkulturen; DSMZ) for her advice in 16S rRNA sequence analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes F. Imhoff or Mohammad Saeid Hejazi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarhriz, V., Thiel, V., Nematzadeh, G. et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran. Antonie van Leeuwenhoek 104, 1205–1215 (2013). https://doi.org/10.1007/s10482-013-0042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0042-y

Keywords

Navigation