Skip to main content

Advertisement

Log in

High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Antonov JI, Levitus S, Boyer TP, Conkright ME, O’Brien TD, and Stephens C (1998) World Ocean Atlas 1998 Vol.1: Temperature of the Atlantic Ocean. NOAA Atlas NESDIS 27, 166 pp.

  • Beitsch A, Kaleschke L, Kern S (2014) Investigating high-resolution AMSR2 sea ice concentrations during the February 2013 fracture event in the Beaufort Sea. Remote Sens 6:3841–3856

    Article  Google Scholar 

  • Bishop SP, Gent PR, Bryan FO, Thompson AF, Long MC, Abernathey R (2016) Southern ocean overturning compensation in an eddy-resolving climate simulation. J Phys Oceanogr 46(5):1575–1592

    Article  Google Scholar 

  • Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU (2008) The responose of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience 1:864–869

    Article  Google Scholar 

  • Carmack EC (1986) Circulation and mixing in ice covered waters. NATO-ASI Series B146:641–712

    Google Scholar 

  • Cheon WG, Park YG, Toggweiler JR, Lee SK (2014) The relationship of Weddell polynya and open-ocean deep convection to the southern hemisphere westerlies. J Phys Oceanogr 44:694–713

    Article  Google Scholar 

  • Close SE, Goosse H (2013) Entrainment-driven modulation of Southern Ocean mixed layer properties and sea ice variability in CMIP5 models. J Geophys Res 118:2811–2827

    Article  Google Scholar 

  • de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinova I (2014) Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat.Clim.Change, published online, doi: https://doi.org/10.1038/nclimate2132.

  • Dufour CO, Morrison AK, Griffies SM, Frenger I, Zanowski H, Winton M (2017) Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows. J Climate 30:7719–7737

    Article  Google Scholar 

  • Frenger I, Gruber N, Knutti R, Münnich M (2013) Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat Geosci 6(8):608–612

    Article  Google Scholar 

  • Fyfe JC, Gillet NP, Marshall GJ (2012) Human influence on extratropical Southern Hemisphere summer precipitation. Geophys Res Lett 39:L23711

    Article  Google Scholar 

  • Gent PR, Danabasoglu G (2011) Response to increasing southern hemisphere winds in CCSM4. J. Climate 24:4992–4998

    Article  Google Scholar 

  • Gordon AL, Huber BA (1990) Southern Ocean winter mixed layer. J Geophys Res 95(11):655–611 672

    Google Scholar 

  • Gordon AL, Visbeck M, Comiso JC (2007) A possible link between the Weddell polynya and the southern annular mode. J Clim 20:2558–2571

    Article  Google Scholar 

  • Griffies SM, Winton M, Anderson WG, Benson R, Delworth TL, Dufour CO, Dunne JP, Goddard P, Morrison AK, Rosati A, Wittenberg AT, Yin J, Zhang R (2015) Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate 28:952–977

    Article  Google Scholar 

  • Haapala J, Lönnroth N, Stössel A (2005) A numerical study of open water formation in sea ice. J Geophys Res 110:C09011. https://doi.org/10.1029/2003JC002200

    Article  Google Scholar 

  • Haarsma RJ, Roberts M, Vidale PL, Senior CA, Bellucci A, Bao Q, Chang P, Corti S, Fuçkar NS, N. S, Guemas V, von Hardenberg J, Hazeleger W, Kodama C, Koenigk T, Leung LR, Lu J, Luo JJ, Mao J, Mizielinski MS, Mizuta R, Nobre P, Satoh M, Scoccimarro E, Semmler T, Small J, von Storch JS (2016) High resolution model intercomparison project (HighResMIP). Geosci Model Dev 9:4185–4208. https://doi.org/10.5194/gmd-9-4185-2016

    Article  Google Scholar 

  • Haumann (2011) Dynamical interaction between atmosphere and sea ice in Antarctica. Utrecht University, Thesis

    Google Scholar 

  • Heil P, Hibler WD III (2002) Modeling the high-frequency component of Arctic sea ice drift and deformation. J Phys Oceanogr 32:3039–3057

    Article  Google Scholar 

  • Heuzé C, Heywood KJ, Stevens DP, Ridley JK (2013) Southern Ocean bottom water characteristics in CMIP5 models. Geophys Res Lett 40:1409–1414

    Article  Google Scholar 

  • Hirabara M, Tsujino H, Nakano H, Yamanaka G (2012) Formation mechanism of the Weddell Polynya and the impact on the global abyssal ocean. J Oceanogr 68:771–796

    Article  Google Scholar 

  • Hogg AM, Meredith MP, Chambers DP, Abrahamsen EP, Hughes CW, Morrison AK (2015) Recent trends in the Southern Ocean eddy field. JGR-Oceans 120:257–267

    Google Scholar 

  • Holland PR, Kwok R (2012) Wind-driven trends in Antarctic sea-ice drift. Nature Geosci 5:872–875

    Article  Google Scholar 

  • IPCC, 2013. Flato, G.M., Marotzke, J. & 15 co-authors. Evaluation of climate models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F. & 9 editors]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Johannessen JA, Johannessen OM, Svendsen E, Shuchman R, Manley T, Campbell WJ, Josberger EG, Sandven S, Gascard JC, Olaussen T, Davidson K, Van Leer J (1987) Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments. J Geophys Res 92:6754–6772

    Article  Google Scholar 

  • Johannessen OM, Sandven S, Budgell WP, Johannessen JA, and Shuchman RA (1994) Observations and simulations of ice tongues and vortex pairs in the marginal ice zone. In: The polar oceans and their role in shaping the global environment: the Nansen centennial volume (eds.: Johannessen, O.M., Muench, R.D., and Overland, J.E.). AGU Geophysical Monograph 85, 109–136.

  • Kaleschke L, Luepkes C, Vihma T, Haarpaitner J, Bochert A, Hartmann J, Heygster G (2001) SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Can J Remote Sens 27:526–537

    Article  Google Scholar 

  • Koentopp M, Eisen O, Kottmeier C, Padman L, Lemke P (2005) Influence of tides on sea ice in the Weddell Sea: investigations with a high-resolution dynamic-thermodynamic sea ice model. J. Geophys. Res. 110:C02014. https://doi.org/10.1029/2004JC002405

    Article  Google Scholar 

  • Kurtz NT, Markus T (2012) Satellite observations of Antarctic sea ice thickness and volume. JGR 117:C08025. https://doi.org/10.1029/2012JC008141

    Article  Google Scholar 

  • Kwok R, Schweiger A, Rothrock DA, Pang S, Kottmeier C (1998) Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. J Geophs Res 103:8191–8214

    Article  Google Scholar 

  • Kwok R, Cunningham GF, Hibler WD III (2003) Sub-daily sea ice motion and deformation from RADARSAT observations. GRL 30(23):2218

    Article  Google Scholar 

  • Kwok R, Comiso JC, Martin S, Drucker R (2007) Ross Sea polynyas: response of ice concentration retrievals to large areas of thin ice. J Geophys Res 112:C12012. https://doi.org/10.1029/2006JC003967

    Article  Google Scholar 

  • Leppäranta M (2005) The drift of sea ice. Springer-Praxis books in Geophysical Sciences, ISBN 3–540–40,881-9. Springer-Verlag, Berlin Heidelberg New York, p 266

    Google Scholar 

  • Leppäranta M (2012) A treatise on frequency spectrum of drift ice velocity. Cold Regions Science and Technology 76–77:83–91

    Article  Google Scholar 

  • Mahlstein I, Gent PR, Solomon S (2013) Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations. J Geophys Res 118:1–6

    Google Scholar 

  • Maksym T, Stammerjohn SE, Ackley S, Massom R (2012) Antarctic sea ice—a polar opposite? Oceanography 25:140–151

    Article  Google Scholar 

  • Markus T, Kottmeier C, and Fahrbach E (1998) Ice formation in coastal polynyas in the Weddell Sea and their impact on oceanic salinity. In: Antarctic sea ice: physical processes, interactions and variability. AGU, Antarctic Research Series, 74:273–292.

  • Martin S, Drucker R, Kwok R, Holt B (2004) Estimation of the thin ice thickness and heat flux from SSM/I data for the Chukchi Sea Alaskan coast polynya for 1990–2001. J Geophys Res 109:C10012. https://doi.org/10.1029/2004JC002428

    Article  Google Scholar 

  • Martin T, Park W, Latif M (2013) Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Clim Dyn 40:2005–2022

    Article  Google Scholar 

  • Martin T, Park W, Latif M (2015) Southern ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model. Deep-Sea Research II 114:39–48

    Article  Google Scholar 

  • Martinson DG (1990) Evolution of the Southern Ocean winter mixed layer and sea ice: open ocean deepwater formation and ventilation. J Geophys Res 95:11,641–11,654

    Article  Google Scholar 

  • Mazloff MR, Heimbach P, Wunsch C (2010) An eddy-permitting Southern Ocean State Estimate. J Phys Oceanogr 40:880–899

    Article  Google Scholar 

  • McPhee MG (1978) A simulation of the inertial oscillation in drifting pack ice. Dyn Atmos Oceans 2:107–122

    Article  Google Scholar 

  • McPhee MG, Kottmeier C, Morison JH (1999) Ocean heat flux in the central Weddell Sea during winter. J Phys Oceanogr 29(6):1166–1179

    Article  Google Scholar 

  • Newsom ER, Bitz CM, Bryan FO, Abernathy R, Gent PR (2016) Southern Ocean deep circulation and heat uptake in a high-resolution climate model. J Climate 29:2597–2619

    Article  Google Scholar 

  • Milinski S, Bader J, Haak H, Siongco AC, Jungclaus JH (2016) High atmospheric horizontal resolution eliminates the wind-driven coastal warm bias in the southeastern tropical Atlantic. Geophys Res Lett 43. https://doi.org/10.1002/2016GL070530

  • Ohshima KI, Wakatsuchi M (1990) A numerical study of barotropic instability associated with the Soya Warm Current in the Sea of Okhotsk. J Phys Oceanogr 20:570–584

    Article  Google Scholar 

  • Padman L, Kottmeier C (2000) High frequency ice motion and divergence in the Weddell Sea. J Geophys Res 105:3379–3400

    Article  Google Scholar 

  • Roach, L.A., Dean, S.M., and Renwick, J.A. 2017. Consistent biases in Antarctic sea ice concentration simulated by climate models. The Cryosphere Discuss, under review.

  • Röske F (2006) A global heat and freshwater forcing dataset for ocean models. Ocean Modeling 11:235–197

    Article  Google Scholar 

  • Sallée J-B, Shuckburgh E, Bruneau N, Meijers AJS, Bracegirdle TJ, Wang Z, Roy T (2013) Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response. J Geophys Res 118:1830–1844

    Article  Google Scholar 

  • Small RJ & 18 co-authors (2014) A new synoptic scale resolving global climate simulation using the Community Earth System Model. JAMES 6. https://doi.org/10.1002/2014MS000363

  • Smith DC IV, Stössel A (2008) A numerical study of nonhydrostatic Antarctic convective overturning. AGU Fall Meeting

    Google Scholar 

  • Smith DC IV, Bird AA, Budgell WP (1988) A numerical study of mesoscale ocean eddy interaction with a marginal ice zone. J Geophys Res 93:12,461–12,473

    Article  Google Scholar 

  • Spreen G, Kaleschke L, Heygster G (2008) Sea ice remote sensing using AMSR-E 89-GHz channels. J Geophys Res 113:C02S03. https://doi.org/10.1029/2005JC003384

    Article  Google Scholar 

  • Steele M, Morley R, Emold W (2001) PHC: A global ocean hydrography with a high-quality Arctic Ocean. J Clim 14:2079–2087

    Article  Google Scholar 

  • Stössel A, Zhang Z, Vihma T (2011) The effect of alternative real-time wind forcing on Southern Ocean sea-ice simulations. J Geophys Res 116:C11021. https://doi.org/10.1029/2011JC007328

    Article  Google Scholar 

  • Stössel A, Notz D, Haumann A, Haak H, Jungclaus J, Mikolajewicz U (2015) Controlling high-latitude Southern Ocean convection in climate models. Ocean Modeling 86:58–75

    Article  Google Scholar 

  • Tamura T, Ohshima KI, Nihashi S (2008) Mapping of sea ice production for Antarctic coastal polynyas. Geophys Res Lett 35(7). https://doi.org/10.1029/2007GL032903

  • Turner J, Bracegirdle TJ, Phillips T, Marshall GJ, Hosking JS (2013) An initial assessment of Antarctic sea ice extent in the CMIP5 models. J Climate 26:1473–1484

    Article  Google Scholar 

  • Uotila J, Vihma T, Launiainen J (2000) Response of the Weddell Sea pack ice to wind forcing. J.Geophys.Res. 105(C1):1135–1151

    Article  Google Scholar 

  • Vihma T, Launiainen J (1993) Ice drift in the Weddell Sea in 1990–1991 as tracked by a satellite buoy. J Geophys Res 98:14,471–14,485

    Article  Google Scholar 

  • Vihma T, Launiainen J, Uotila J (1996) Weddell sea ice drift: kinematics and wind forcing. J Geophys Res 101:18,279–18,296

    Article  Google Scholar 

  • von Storch JS, Eden C, Fast I, Haak H, Hernandez-Deckers D, Maier-Reimer E, Marotzke J, Stammer D (2012) An estimate of Lorenz energy cycle for the world ocean based on the 1/100 STORM/NCEP simulation. J Phys Oceanogr 42:2185–2205

    Article  Google Scholar 

  • von Storch JS, Haak H, Hertwig E, Fast I (2016) Vertical heat and salt fluxes due to resolved and parameterized meso-scale eddies. Ocean Modeling 108:1–19

    Article  Google Scholar 

  • Wakatsuchi M, Ohshima KI (1990) Observations of ice-ocean eddy streets in the Sea of Okhotsk off the Hokkaido coast using radar images. J Phys Oceanogr, 20:585–594

  • Weijer W, Veneziani M, Stössel A, Hecht M, Jeffery N, Jonko A, Hodos T, Wang H (2017) Local atmospheric response to an open-ocean polynya in a high-resolution climate model. J Climate. https://doi.org/10.1175/JCLI-D-16-0120.1

  • Williams G, Maksym T, Wilkinson J, Kunz C, Murphy C, Kimball P, Singh H (2014) Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles. Nature Geosci 8:61–67

    Article  Google Scholar 

  • Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL (2008) Thickness distribution of Antarctic sea ice. J Gephys Res 113:C05S92. https://doi.org/10.1029/2007JC004254

    Google Scholar 

  • Zhang Z, Vihma T, Stössel A, Uotila P (2015) The role of wind forcing from operational analyses for the model representation of Antarctic coastal sea ice. Ocean Modeling 94:95–111

    Article  Google Scholar 

  • Zunz V, Goosse H, Massonnet F (2013) How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? The Cryosphere 7:451–468

    Article  Google Scholar 

  • Zwally HJ, Yi D, Kwok R, Zhao Y (2008) ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J Geophys Res 113(C2). https://doi.org/10.1029/2007JC004284

Download references

Acknowledgements

Thanks are due to Lars Kaleschke and Ronald Kwok (NASA-JPL) for their input on the status of high-resolution satellite-derived ice concentration and drift, and to Irina Fast (DKRZ) for her technical support on the TP6M-NCEP simulations. We thank the STORM consortium (https://www.dkrz.de/Klimaforschung-en/konsortial-en/storm-en) for realizing the 0.1° MPIOM simulations. Finally, we thank two anonymous reviewers for their thorough reviews and their constructive comments that helped us improve this contribution considerably.

Funding

This work was mainly funded through short-term Max-Planck-Society research stipends. The SSMI derived sea-ice concentration using the ASI algorithm was provided by the Integrated Climate Data Center (ICDC), http://icdc.zmaw.de, University of Hamburg, Germany. The AMSR2 data was provided by Lars Kaleschke (Hamburg University), processed by Xiangshan Tian-Kunze (Hamburg University), and kindly reprocessed by Stefan Kern (ICDC). AMSR2 is mounted on the GCOM-W1 satellite, operated by JAXA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Stössel.

Additional information

Responsible Editor: Jörg-Olaf Wolff

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stössel, A., von Storch, JS., Notz, D. et al. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model. Ocean Dynamics 68, 347–361 (2018). https://doi.org/10.1007/s10236-018-1135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-018-1135-y

Keywords

Navigation