Skip to main content
Log in

Sensitivities of an adjoint, unstructured mesh, tidal model on the European Continental Shelf

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Unstructured mesh models can resolve the model domain with a variable and very fine mesh resolution. Nevertheless, tuning the model setup is still required (for example because of parametrized sub-grid processes). Adjoint models are commonly used to calculate sensitivities of ocean models and optimize their parameters so that better agreement is achieved between model simulations and observations. One major obstacle in developing an adjoint model is the need to update the reverse code after each modification of the forward code, which is not always straightforward. Automatic differentiation is a tool to generate the adjoint model code without user input. So far this method has mainly been used for structured mesh ocean models. We present here an unstructured mesh, adjoint, tidal model using this technique, and discuss the sensitivities of the misfit between simulated and observed elevations with respect to open boundary values, the bottom friction coefficient and the bottom topography. The forward model simulates tides on the European Continental Shelf and we show that the tidal model dynamics in the adjoint simulations can be used to define regions, where parameters or mesh has to be optimized. We analyze the dependence of the sensitivities on the wave type and mesh resolution to specify whether the model misfit originates from physical or numerical model deficiencies. In the sensitivity patterns, it is possible to identify islands not resolved in the mesh. We propose to refine the mesh prior to the parameter optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen OB (1996) Inverse methods, vol 63. Lecture notes in Earth Sciences, chap application of inversion to global ocean tide mapping. pp 239–246

  • Andersen OB (2008) Personal communication. DTU, National Space Institute, Denmark

    Google Scholar 

  • Androsov AA, Klevanny KA, Salusti ES, Voltzinger NE (1995) Open boundary conditions for horizontal 2-d curvilinear-grid long-wave dynamics of a strait. Advances in Water Resources 18:267–276

    Article  Google Scholar 

  • Ayoub N, Stammer D, Wunsch C (2001) Estimating the North Atlantic circulation with nesting and open boundary conditions using an adjoint model. The ECCO Report Series 10

  • Bennett AF (1992) Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Blayo E, Debreu L (2005) Revisiting open boundary conditions from the point of view of characteristic variables. Ocean Model 9:231–252

    Article  Google Scholar 

  • Bourret A, Devenon JL, Chevalier C (2005) Investigation on passive open boundary conditions adapted to the conjunction of strong currents, standing tidal wave and high stratification: application to the French Guiana Continental Shelf. Cont Shelf Res 25:1353–1373

    Article  Google Scholar 

  • Das SK, Lardner RW (1992) Variational parameter estimation for a two-dimensional numerical tidal model. Int J Numer Methods fluids 15:313–327

    Article  Google Scholar 

  • Davies AM, Kwong SCM, Flather RA (1997) A three-dimensional model of diurnal and semidiurnal tides on the european shelf. J Geophys Res 102(C4):8625–8656

    Article  Google Scholar 

  • Dick S, Kleine E, Müller-Navarra S (2001) The operational circulation model of BSH (BSHcmod)—model description and validation. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 29:49

    Google Scholar 

  • Dobrindt U, Schröter J (2003) An adjoint ocean model using finite elements: an application to the South Atlantic. J Atmos Ocean Technol 20(3):392–407

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

    Article  Google Scholar 

  • Evensen G, Dee DP, Schröter J (1998) Parameter estimation in dynamical models. In: Chassignet E, Verron J (eds) Ocean modeling and parametrization. Kluwer Academic Publishers, Series C: Mathematical and Physical Sciences, vol 516, Boston, MA. pp. 373–398

  • Flather RA (1976) A tidal model of the North-West European Continental Shelf. Memoires Societe Royale des Sciences de Liege 6(X):141–164

    Google Scholar 

  • Giering R (1999) Tangent linear and adjoint model compiler. Users manual 1.4

  • Giering R, Kaminski T (1998) Recipes for adjoint code construction. ACM Trans Math Softw 24(4):437–474

    Article  Google Scholar 

  • Goodwillie A (1997) Centenary Edition of the GEBCO Digital Atlas: user guide to the GEBCO one minute grid. Scripps Institution of Oceanography, La Jolla, CA

    Google Scholar 

  • Gustafsson B, Sundström A (1978) Incompletely parabolic problems in fluid dynamics. SIAM J Appl Math 35(2):343–357

    Article  Google Scholar 

  • Hanert E, Walters RA, Le Roux DY, Pietrzak JD (2009) A tale of two elements: \({P_1^{NC}}\) and RT 0. Ocean Model 28:24–33

    Article  Google Scholar 

  • Harig S, Chaeroni, Pranowo WS, Behrens J (2008) Tsunami simulations on several scales: comparison of approaches with unstructured meshes and nested grids. Ocean Dynamics 58(5-6):429–440

    Article  Google Scholar 

  • He R, Wilkin JL (2006) Barotropic tides on the southeast New England shelf: A view from a hybrid data assimilative modeling approach. J Geophys Res 111(C08002). doi:10.1029/2005JC003254

    Google Scholar 

  • He Y, Lu X, Qui Z, Zhao J (2004) Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/POSEIDON altimeter data. Cont Shelf Res 24:1521–1529

    Article  Google Scholar 

  • Heemink AW, Mouthaan EEA, Roest MRT, Vollebregt EAH, Robaczewska KB, Verlaan M (2002) Inverse 3D shallow water flow modelling of the continental shelf. Cont Shelf Res 22:465–484

    Article  Google Scholar 

  • Heimbach P, Hill C, Giering R (2005) An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation. Future Gener Comput Syst 21(8):1356–1371. doi:10.1016/j.future.2004.11.010

    Article  Google Scholar 

  • Hervouet JM (2007) Hydrodynamics of free surface flows. Wiley

  • Hervouet JM, Van Haren L (1994) TELEMAC-2d Version 3.0 Principal Note. Tech. rep., EDF Électricité de France, Departement Laboratoire National d’Hydraulique

  • Hua B, Thomasset F (1984) A noise free finite element scheme for the two layer shallow equations. Tellus 36A:157–165

    Article  Google Scholar 

  • Janssen F (2009) Personal communication. Bundesamt für Seeschiffahrt und Hydrographie

  • Lardner RW, Al-Rabeh AH, Gunay N (1993) Optimal estimation of parameters for a two-dimensional hydrodynamical model of the Arabian Gulf. J Geophys Res 98(C10):18229–18242

    Article  Google Scholar 

  • Le Provost C, Bennett AF, Cartwright DE (1995a) Ocean tides for and from TOPEX/POSEIDON. Science 267(5198):639–642. doi:10.1126/science.267.5198.639

    Article  Google Scholar 

  • Le Provost C, Genco ML, Lyard F (1995b) Coastal and estuarine studies: quantitative skill assessment for coastal ocean models. American Geophysical Union, chap Modeling and predicting tides over the World Ocean, pp 175–201

  • Le Roux DY (2005) Dispersion relation analysis of the P NC − P 1 finite-element pair in shallow-water models. SIAM J Sci Statist Comput 27(2):394–411

    Article  Google Scholar 

  • Logutov OG, Lermusiaux PFJ (2008) Inverse barotropic tidal estimation for regional ocean applications. Ocean Model 25:17–34. doi:10.1016/j.ocemod.2008.06.004

    Article  Google Scholar 

  • Lynch DR, Hannah CG (2001) Inverse model for limited-area hindcasts on the continental shelf. J Atmos Ocean Technol 18(6):962–981

    Article  Google Scholar 

  • Marotzke J, Giering R, Zhang KQ, Stammer D, Hill C, Lee T (1999) Construction of the adjoint MIT ocean general circulation model and application to atlantic heat transport sensitivity. J Geophys Res 104(C12):29529–29547

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102(C3):5753–5766

    Article  Google Scholar 

  • Maßmann S (2010) Tides on unstructured meshes. Ph.D. thesis, Fachbereich Physik, Universität Bremen. Available at: http://deposit.d-nb.de/cgi-bin/dokserv?idn=1001723007. Accessed 20 April 2010

  • Maßmann S, Androsov A, Danilov S (2010) Intercomparison between finite-element and finite-volume approaches to model North Sea tides. Cont Shelf Res 30(6):680–691. doi:10.1016/j.csr.2009.07.004

    Article  Google Scholar 

  • Proudman J (1952) Dynamical oceanography. Dover, New York

    Google Scholar 

  • Schröter J, Seiler U, Wenzel M (1993) Variational assimilation of Geosat data into an eddy-resolving model of the Gulf Stream extension area. J Phys Oceanogr 23:925–953

    Article  Google Scholar 

  • Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering. Lecture notes in computer science, vol 1148. Springer, from the First ACM Workshop on Applied Computational Geometry, pp 203–222

  • Shulman I, Lewis JK, Blumberg AF, Kim BN (1998) Optimized boundary conditions and data assimilation with applictation to the m 2 tide in the Yellow Sea J Atmos Ocean Technol 15(4):1066–1071

    Article  Google Scholar 

  • Sidorenko D (2004) The North Atlantic circulation derived from inverse models. Ph.D. thesis, Fachbereich Physik, Universität Bremen

  • Taguchi E (2004) Inverse Modellierung nichtlinearer Flachwassergezeiten und ihre Anwendungen auf ein Randmeer. In: Berichte aus dem Zentrum für Meeres- und Klimaforschung, no. 47 in Reihe B: Ozeanographie, Zentrum für Meeres- und Klimaforschung des Universität Hamburg, Institut für Meereskunde

  • Taylor GI (1918) Tidal friction in the Irish Sea. Philos Trans R Soc Lond Ser A 220:1

    Article  Google Scholar 

  • Ten Brummelhuis PGJ, Heemink AW (1993) Identification of shallow sea models. Int J Numer Methods Fluids 17:637–665

    Article  Google Scholar 

  • Verlaan M, Mouthaan EEA, Kuijper EVL, Philippart ME (1996) Hydroinformatics’96: proceedings of the second international conference on hydroinformatics. Zürich, Switzerland, 9–13 September 1996, A A Balkema, Rotterdam, chap Parameter estimation tools for shallow water flow models. pp. 341–348

  • Verlaan M, Zijderveld A, de Vries H, Kroos J (2005) Operational storm surge forecasting in the Netherlands: developments in the last decade. Philos Trans R Soc Lond Ser A 363:1441–1453. doi:10.1098/rsta.2005.1578

    Article  Google Scholar 

  • Wenzel M, Schröter J (2002) Assimilation of TOPEX/Poseidon data in a global ocean model: differences in 1995–1996. Phys Chem Earth 27:1433–1437

    Google Scholar 

  • Wenzel M, Schröter J, Olbers D (2001) The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation. Prog Oceanogr 48:73–119

    Article  Google Scholar 

  • Williams PD (2009) A proposed modification to the Robert–Asselin time filter. Mon Weather Rev 137(8):2538–2546. doi:10.1175/2009MWR2724.1

    Article  Google Scholar 

  • Yang Z, Hamrick JH (2005) Optimal control of salinity boundary condition in a tidal model using a variational inverse method. Estuar Coast Shelf Sci 62:13–24

    Article  Google Scholar 

  • Zhang A, Wei E, Parker BB (2003) Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique. Cont Shelf Res 23:1055–1070

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted to Sven Harig for the help with mesh design and smoothing. Many thanks also goes to Sergey Danilov and Martin Losch for proof-reading the article and their constructive critiques. I would also like to thank the anonymous reviewers of this paper for their suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Maßmann.

Additional information

Responsible Editor: Eric Deleersnijder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maßmann, S. Sensitivities of an adjoint, unstructured mesh, tidal model on the European Continental Shelf. Ocean Dynamics 60, 1463–1477 (2010). https://doi.org/10.1007/s10236-010-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0347-6

Keywords

Navigation