Skip to main content
Log in

A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A one-dimensional model is used to analyze, at the local scale, the response of the equatorial Atlantic Ocean under different meteorological conditions. The study was performed at the location of three moored buoys of the Pilot Research Moored Array in the Tropical Atlantic located at 10° W, 0° N; 10° W, 6° S; and 10° W, 10° S. During the EGEE-3 (Etude de la circulation océanique et de sa variabilité dans le Golfe de Guinee) campaign of May–June 2006, each buoy was visited for maintenance during 2 days. On board the ship, high-resolution atmospheric parameters were collected, as were profiles of temperature, salinity, and current. These data are used here to initialize, force, and validate a one-dimensional model in order to study the diurnal oceanic mixed-layer variability. It is shown that the diurnal variability of the sea surface temperatures is mainly driven by the solar heat flux. The diurnal response of the near-surface temperatures to daytime heating and nighttime cooling has an amplitude of a few tenths of degree. The computed diurnal heat budget experiences a net warming tendency of 31 and 27 W m−2 at 0° N and 10° S, respectively, and a cooling tendency of 122 W m−2 at 6° S. Both observed and simulated mixed-layer depths experience a jump between the nighttime convection phase and the well-stabilized diurnal water column. Its amplitude changes dramatically depending on the meteorological conditions occurring at the stations and reaches its maximum amplitude (~50 m) at 10° S. At 6° and 10° S, the presence of barrier layers is observed, a feature that is clearer at 10° S. Simulated turbulent kinetic energy (TKE) dissipation rates, compared to independent microstructure measurements, show that the model tracks their diurnal evolution reasonably well. It is also shown that the shear and buoyancy productions and the vertical diffusion of TKE all contribute to the supply of TKE, but the buoyancy production is the main source of TKE during the period of the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adamec D, O'Brien JJ (1978) The seasonal upwelling in the Gulf of Guinea due to remote forcing. J Phys Oceanogr 8:1050–1060

    Article  Google Scholar 

  • Anderson RJ (1993) A study of wind stress and heat flux over the open ocean by the inertial dissipation method. J Phys Oceanogr 23:2153–2161

    Article  Google Scholar 

  • Bellanger H (2007) Rôle de l'interaction océan-atmosphère dans la variabilité intrasaisonnière de la convection tropicale. PhD thesis, Ecole Polytechnique

  • Bernie DJ, Woolnough SJ, Slingo JM, Guilyardi E (2005) Modeling diurnal and intraseasonal variability of the ocean mixed layer. J Climate 18:1190–1202

    Article  Google Scholar 

  • Bernie DJ, Guilyardi E, Madec G, Slingo JM, Woolnough SJ (2007) Impact of resolving the diurnal cycle in an ocean–atmosphere GCM: part I: diurnally forced OGCM. Clim Dyn 29:575–590

    Article  Google Scholar 

  • Bernie DJ, Guilyardi E, Madec G, Slingo JM, Woolnough SJ, Cole J (2008) Impact of resolving the diurnal cycle in an ocean–atmosphere GCM: part 2: a diurnally coupled OGCM. Clim Dyn 31:909–925

    Article  Google Scholar 

  • Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a meso-beta-scale model. Mon Weather Rev 117:1872–1890

    Article  Google Scholar 

  • Bourlès B, Gouriou Y, Chuchla R (1999) On the circulation and upper layer of the western equatorial Atlantic. J Geophys Res 104(C9):21151–21170

    Article  Google Scholar 

  • Bourlès B, D’Orgeville M, Eldin G, Chuchla R, Gouriou Y, du Penhoat Y, Arnault S (2002) On the thermocline and subthermocline eastward currents evolution in the eastern equatorial Atlantic. Geophys Res Lett 29(16):32.1–32.4. doi:10.1029/2002GL015098

    Google Scholar 

  • Bourlès B, Brandt P, Caniaux G, Dengler M, Gouriou Y, Key E, Lumpkin R, Marin F, Molinari RL, Schmid C (2007) African Monsoon Multidisciplinary Analysis (AMMA): special measurements in the tropical Atlantic. CLIVAR Newsl Exchanges 41(12):7–9

    Google Scholar 

  • Bourlès B, Busalacchi AJ, Campos E, Hernandez F, Lumpkin R, McPhaden MJ, Moura AD, Nobre P, Planton S, Servain J, Trotte J, Yu L (2008) The PIRATA program: history and accomplishments of the 10 first years tropical Atlantic observing system’s backbone. Bull Am Meteorol Soc 89(8):1111–1125. doi:10.1175/2008BAMS2462.1

    Article  Google Scholar 

  • Bourras D, Weill A, Caniaux G, Eymard L, Bourlès B, Letourneur S, Legain D, Key E, Baudin F, Piguet B, Traullé O, Bouhours G, Sinardet B, Barrié J, Vinson JP, Boutet F, Berthod C, Clémençon A (2009) Turbulent air–sea fluxes in the Gulf of Guinea during the AMMA experiment. J Geophys Res 114:C04014. doi:10.1029/2008JC004951

    Article  Google Scholar 

  • Bunge L, Provost C, Kartavtseff A (2007) Variability in horizontal current velocities in the central and eastern equatorial Atlantic in 2002. J Geophys Res 112:C02014. doi:10.1029/2006JC003704

    Article  Google Scholar 

  • Caniaux G, Planton S (1998) A three-dimensional ocean mesoscale simulation using data from the SEMAPHORE experiment: mixed layer heat budget. J Geophys Res 103(C11):25081–25099

    Article  Google Scholar 

  • Caniaux G, Giordani H, Redelsperger JL, Guichard F, Key E, Wade M (2010) Coupling between the Atlantic cold tongue and the African monsoon in boreal spring and summer. Submitted to JGR

  • Carton JA, Zhou ZX (1997) Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J Geophys Res 102:27813–27824

    Article  Google Scholar 

  • Chen SS, Houze RA (1997) Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart J Roy Meteor Soc 123:357–388

    Article  Google Scholar 

  • Clayson CA, Chen A (2002) Sensitivity of a coupled single-column model in the tropics to treatment of the interfacial parameterizations. J Clim 15:1805–1831

    Article  Google Scholar 

  • Clayson CA, Kantha LH (1999) Turbulent kinetic energy and its dissipation rate in the equatorial mixed layer. J Phys Oceanogr 29:2146–2166

    Article  Google Scholar 

  • Crawford WR, Osborn TR (1979) Microstructure measurements in the Atlantic equatorial undercurrent during GATE. Deep Sea Res II 6:285–308

    Google Scholar 

  • Cronin MF, Kessler WS (2009) Near-surface shear flow in the tropical Pacific cold tongue front. J Phys Oceanogr 39:1200–1215

    Article  Google Scholar 

  • Cronin MF, McPhaden MJ (1997) The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J Geophys Res 102:8533–8553

    Article  Google Scholar 

  • Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17:930–951

    Article  Google Scholar 

  • Danabasoglu G, Large W, Tribbia J, Gent P, Briegleb B (2006) Diurnal coupling in the tropical oceans of CCSM3. J Climate 19:2347–2365

    Article  Google Scholar 

  • DeCosmo J, Katsaros KB, Smith SD, Anderson RJ, Oost WA, Bumke K, Chadwick H (1996) Air–sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J Geophys Res 101:12001–12016

    Article  Google Scholar 

  • Dengler M, Bourlès B, Chuchla R, Toole J (2010) Enhanced upper ocean mixing and turbulent heat flux in the equatorial Atlantic at 10°W. Geophys Res Lett (in press)

  • Dourado MS, Caniaux G (2004) One-dimensional modeling of the oceanic boundary layer with PIARATA data at 10°S 10°W. Rev Brasilieria Meteorologia 19(2):217–226

    Google Scholar 

  • Fairall CW, Bradley EF, Godfrey JS, Wick GA, Edson JB (1996) Cool-skin and warm-layer effects on sea surface temperature. J Geophys Res 101:1295–1308

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591

    Article  Google Scholar 

  • Foltz G, Grodsky SA, Carton JA, McPhaden MJ (2003) Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J Geophys Res 108(C5):3146–3159. doi:10.1029/2002JC001584

    Article  Google Scholar 

  • Gaspar P, Gregoris Y, Lefevre JM (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station PAPA and Long-Term Upper Ocean Study site. J Geophys Res 95:16179–16193

    Article  Google Scholar 

  • Giordani H, Caniaux G (2010) Diagnosing vertical motion at the equatorial Atlantic. Submitted to JGR

  • Gregg MC, Peters H, Wesson JC, Oakey NS, Shay TJ (1985) Intensive measurements of turbulence and shear in the equatorial undercurrent. Nature 318:140–144

    Article  Google Scholar 

  • Hebert D, Moum JN, Caldwell DR (1991) Does ocean turbulence peak at the Equator? Revisited. J Phys Oceanogr 21:1690–1698

    Article  Google Scholar 

  • Hormann V, Brandt P (2007) Atlantic equatorial undercurrent and associated cold tongue variability. J Geophys Res 112:C06017. doi:10.1029/2006JC003931

    Article  Google Scholar 

  • Janicot A, Ali A, Asencio N, Berry G, Bock O, Bourles B, Caniaux G, Chauvin F, Deme A, Kergoat L, Lafore JP, Lavaysse C, Lebel T, Marticorena B, Mounier F, Nedelec P, Redelsperger JL, Ravegnani F, Reeves CE, Roca R, de Rosnay P, Schlager H, Sultan B, Thorncroft C, Tomasini M, Ulanovsky A, ACMAD forecasters team (2008) Large-scale overview of the summer monsoon over West and Central Africa during the AMMA field experiment in 2006. Ann Geophys 26:2569–2595

    Article  Google Scholar 

  • Jerlov NG (1968) Optical oceanography. Elsevier, Amsterdam, 194 pp

  • Josse P (1999) Modélisation couplée ocean–atmosphère à mésoéchelle: application à la campagne SEMAPHORE. Toulouse. PhD thesis, Université Paul Sabatier (available in French at CNRM)

  • Kantha LH, Clayson CA (1994) An improved mixed layer model for geophysical applications. J Geophys Res 99:25235–25266

    Article  Google Scholar 

  • Kolmogorov AN (1942) Equations of turbulent motion of an incompressible fluid. Izvestia Acad Sci USSR Phys 6:56–58

    Google Scholar 

  • Kolodziejczyk N, Bourlès B, Marin F, Grelet J, Chuchla R (2009) Seasonal variability of the equatorial undercurrent at 10°W as inferred from recent in situ observations. J Geophys Res 114:C06014.1–C06014.16. doi:1029/2008JC004976

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Leduc-Leballeur M, Eymard L, de Coetlogon G (2010) Observation of the marine atmospheric boundary layer in the gulf of Guinea during the 2006 boreal spring. Submitted to QJRMS

  • Lefèvre N, Guillot A, Beaumont L, Danguy T (2008) Variability of fCO2 in the eastern tropical Atlantic from a moored buoy. J Geophys Res 113:C01015. doi:10.1029/2007JC004146

    Article  Google Scholar 

  • Marin F, Caniaux G, Bourlès B, Giordani H, Gouriou Y, Key E (2009) Why were sea surface temperatures so different in the eastern equatorial Atlantic in June 2005 and 2006? J Phys Oceanogr 39:1416–1431

    Article  Google Scholar 

  • McCreary J, Picaut J, Moore D (1984) Effects of the remote annual forcing in the eastern tropical Atlantic Ocean. J Mar Res 42(45):81

    Google Scholar 

  • Merle J, Fieux M, Hisard P (1980) Annual signal and interannual anomalies of sea surface temperature in the eastern equatorial Atlantic. Deep Sea Res 26 GATE Suppl, pp 77–101

  • Mignot J, de Boyer Montégut C, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean. Part II: tropical and subtropical areas. J Geophys Res 112:C10010. doi:10.1029/2006JC003954

    Article  Google Scholar 

  • Moore DW, Hisard P, McCreary JP, Merle J, O’Brien JJ, Picaut J, Verstraete JM, Wunsch C (1978) Equatorial adjustment in the eastern Atlantic. Geophys Res Lett 5:311–348

    Article  Google Scholar 

  • Moum JN, Caldwell DR (1985) Local influences on shear flow turbulence in the equatorial ocean. Science 230:315–316

    Article  Google Scholar 

  • Moum JN, Hebert D, Paulson CA, Caldwell DR (1992) Turbulence and internal waves at the Equator. Part I: statistics from towed thermistors and a microstructure profiler. J Phys Oceanogr 22:1330–1345

    Article  Google Scholar 

  • Pailler K, Bourlès B, Gouriou Y (1999) The barrier layer in the western Atlantic Ocean. Geophys Res Lett 26:2069–2072

    Article  Google Scholar 

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–967

    Article  Google Scholar 

  • Persson POG, Hare JE, Fairall CW, Otto WD (2005) Air–sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX. Q J R Meteorol Soc 131:877–912

    Article  Google Scholar 

  • Peter AC, Le Henaff M, du Penhoat Y, Menkes CE, Marin F, Vialard J, Caniaux G, Lazar A (2006) A model study of the seasonal mixed layer heat budget in the equatorial Atlantic. J Geophys Res 111:C06014. doi:10.1029/2005JC003157

    Article  Google Scholar 

  • Philander SG (1990) El Niño, La Niña and the Southern Oscillation. Academic, San Diego, 286 pp

  • Philander SG, Pacanowski RC (1986) A model of the seasonal cycle in the tropical Atlantic Ocean. J Geophys Res 91(C12):14192–14206

    Article  Google Scholar 

  • Picaut J (1983) Propagation of the seasonal upwelling in the eastern equatorial Atlantic. J Phys Oceanogr 13:18–37

    Article  Google Scholar 

  • Prandke H, Stips A (1998) Test measurements with an operational microstructure-turbulence profiler: detection limit of dissipation rates. Aquat Sci 60:191–209

    Article  Google Scholar 

  • Provost C, Chouaib N, Spadone A, Bunge L, Arnault S, Sultan E (2006) Interannual variability of the zonal sea surface slope at the equator in the Atlantic in the 1990’s. J Adv Space Res 37:823–831

    Article  Google Scholar 

  • Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an International Research Project and Field Campaign. Bul Amer Meteorol Soc 87:1739–1746

  • Schmitt RW, Ledwell JR, Montgomery ET, Polzin KL, Toole JM (2005) Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308:685–688

    Article  Google Scholar 

  • Schudlich RR, Price JF (1986) Diurnal cycles of current, temperature, and turbulent dissipation in a model of the equatorial upper ocean. J Geophys Res 97:5409–5422

    Article  Google Scholar 

  • Shinoda T (2005) Impact of diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J Clim 18:2628–2636

    Article  Google Scholar 

  • Shinoda T, Hendon HH (1998) Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian oceans. J Clim 11:2668–2685

    Article  Google Scholar 

  • Smith SD (1980) Wind stress and heat flux over the ocean in gale force winds. J Phys Oceanogr 10:709–726

    Article  Google Scholar 

  • Sprintall J, McPhaden MJ (1994) Surface layer variations observed in multiyear time series measurements from the western equatorial Pacific. J Geophys Res 99:963–979

    Article  Google Scholar 

  • Stramma L, Schott F (1999) The mean flow field of the tropical Atlantic Ocean. Deep Sea Res II 4:279–304

    Article  Google Scholar 

  • Stramma L, Fischer J, Brandt P, Schott F (2003) Circulation, variability and near equatorial meridional flow in the central tropical Atlantic. Interhemispheric water exchange in the Atlantic Ocean. Elsevier Oceanogr Ser 68:1–22

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Sabine C, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Körtzinger A, Steinhoff T, Hoppema M, de Baar MJW, Wong CS, Delille B, Bates NR (2009) Climatological mean and decadal changes in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res II 56:554–577

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Voituriez B, Herbland A (1977) Étude de la production pélagique de la zone équatoriale de l’Atlantique a 4°W. I. Relation entre la structure hydrologique et la production primaire. Cah O.R.S.T.O.M. Sér Oceanogr 15:313–331

    Google Scholar 

  • Ward B (2006) Near-surface ocean temperature. J Geophys Res 111:C02004. doi:10.1029/2004JC002689

    Article  Google Scholar 

  • Weill A, Eymard L, Caniaux G, Hauser D, Planton S, Dupuis H, Brut A, Guérin C, Nacass P, Butet A, Cloché S, Pedreros R, Durand P, Bourras D, Giordani H, Lachaud G, Bohours G (2003) Determination of turbulent air–sea fluxes from various mesoscale experiments: a new perspective. J Clim 16(4):600–618

    Article  Google Scholar 

  • Woolnough SJ, Slingo JM, Hoskins BJ (2000) The relationship between convection and sea surface temperature on intraseasonal timescales. J Climate 13:2086–2104

    Article  Google Scholar 

  • Woolnough SJ, Vitart F, Balmaseda MA (2007) The role of the ocean in the Madden–Julian Oscillation: implications for MJO prediction. Quart J Roy Meteor Soc 133:117–128

    Article  Google Scholar 

  • Yu L, Jin X, Weller RA (2006) Role of net surface heat flux in the seasonal evolution of sea surface temperature in the Atlantic Ocean. J Clim 19:6153–6169

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the AMMA project. Based on a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, including those in France, the UK, the US, and Africa. It has been the beneficiary of a major financial contribution from the European Community’s Sixth Framework Research Program. Detailed information on scientific coordination and funding is available on the AMMA International web site http://www.amma-international.org. We thank Bernard Bourlès, the chief scientist of the EGEE program, and all the persons who acquired and prepared the data used in this study as well as the Captain of the R/V L’Atalante and his crew for their help during the EGEE-3 cruise.We warmly thank Dr. Gregory Foltz and an anonymous reviewer for their pertinent and useful comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malick Wade.

Additional information

Responsible Editor: Karen J Heywood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, M., Caniaux, G., duPenhoat, Y. et al. A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign. Ocean Dynamics 61, 1–20 (2011). https://doi.org/10.1007/s10236-010-0337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0337-8

Keywords

Navigation