Skip to main content
Log in

Meso-scale modeling of heat transport in a heterogeneous cemented geomaterial by lattice element method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The simulation of heat transport in a heterogeneous cemented geomaterial using lattice element method is the focus of this paper. The proposed method represents a heterogeneous cemented medium with the inter-connected Euler–Bernoulli beam elements for transmitting heat and mechanical loads. The mechanical equilibrium is assessed with minimizing the potential energy and in a meanwhile the conducted heat between solids is calculated based on modified thermal discrete element method. A validation study for heat transfer is carried out with the existing finite element method. In order to generate the heterogeneity, the random distribution or image processing techniques are implemented and subsequently the effective thermal conductivity (ETC) is determined. The effect of controlling parameters, such as mesh size, randomness factor, voids, heterogeneity and applied external mechanical loads, on calculated ETC is studied. Finally, with application of the proposed coupled thermo-mechanical lattice element, the ETC of three rock samples is determined and compared to the experimental data. The proposed method is able to model the heat transport in a heterogeneous cemented geomaterial and predict the ETC, which matches the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kikuchi, S., Kuroda, T., Enoeda, M.: Preliminary thermo-mechanical analysis of ITER breeding blanket. JAERI Tech 98, 059 (1999)

    Google Scholar 

  2. Nguyen, V.D., Cogné, C., Guessasma, M., Bellenger, E., Fortin, J.: Discrete modeling of granular flow with thermal transfer: application to the discharge of silos. Appl. Therm. Eng. 29, 1846–1853 (2009)

    Article  Google Scholar 

  3. Huang, H.C., Usmani, A.S.: Finite Element Analysis for Heat Transfer. Springer, London (1994)

    Book  Google Scholar 

  4. Thomas, H.R., Lewis, R.W., Morgan, K., Seetharamu, K.N.: The Finite Element Method in Heat Transfer Analysis. Wiley, chichester, England (1996)

  5. Zhang, H.W., Zhou, Q., Zheng, Y.G.: A multi-scale method for thermal conduction simulation in granular materials. Comput. Mater. Sci. 50, 2750–2758 (2011)

    Article  Google Scholar 

  6. Rattanadecho, P., Suttisong, S., Somtawin, T.: The numerical and experimental analysis of heat transport and water infiltration in a granular packed bed due to supplied hot water. Numer. Heat Transf. Part A 65, 1007–1022 (2014)

    Article  ADS  Google Scholar 

  7. Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of Heat and Mass Transfer, 6th edn. Wiley, New York (1979)

    Google Scholar 

  8. Feng, Y.T., Han, K., Li, C.F., Owen, D.R.J.: Discrete thermal element modeling of heat conduction in particle systems: basic formulations. J. Comput. Phys. 227, 5072–5089 (2008)

    Article  ADS  MATH  Google Scholar 

  9. Vargas, W.L., McCarthy, J.J.: Stress effects on the conductivity of particulate beds. Chem. Eng. Sci. 57, 3119–3131 (2002)

    Article  Google Scholar 

  10. Vargas, W.L., McCarthy, J.J.: Thermal expansion effects and heat conduction in granular materials. Phys. Rev. E 76, 041301 (2007)

    Article  ADS  Google Scholar 

  11. Yovanovich, M.M.: Thermal contact resistance across elastically deformed spheres. J. Spacecr. Rocket. 4, 119–122 (1967)

    Article  ADS  Google Scholar 

  12. Holm, R.: Electric Contacts: Theory and Application. Springer, New York (1967)

    Book  Google Scholar 

  13. Batchelor, F.G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A 355, 313–333 (1977)

    Article  ADS  Google Scholar 

  14. Bahrami, M., Yovanovich, M.M., Culham, J.R.: Thermal joint resistances of non-conforming rough surfaces with gas-filled gaps. J. Thermophys. Heat Transf. 18, 326–332 (2004)

    Article  Google Scholar 

  15. Bahrami, M., Culham, J.R., Yovanovich, M.M., Schneider, G.E.: Review of thermal joint resistance models for non-conforming rough surfaces in a vacuum. Appl. Mech. Rev. 59, 1–12 (2006)

    Article  ADS  Google Scholar 

  16. Zhang, H.W., Zhou, Q., Xing, H.L., Muhlhaus, H.: A DEM study on the effective thermal conductivity of granular assemblies. Powder Technol. 205, 172–183 (2011)

    Article  Google Scholar 

  17. Zhou, Q., Zhang, H.W., Zheng, Y.G.: A homogenization technique is proposed to simulate the thermal conduction of periodic granular materials in vacuum. Adv. Powder Technol. 23, 104–114 (2012)

    Article  Google Scholar 

  18. Kuipers, J., van Duin, K., van Beckum, F., van Swaaij, W.: A numerical model of gas-fluidized beds. Chem. Eng. Sci. 47, 1913–1924 (1992)

    Article  Google Scholar 

  19. Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77(1), 79–87 (1993)

    Article  Google Scholar 

  20. Oschmann, T., Schiemann, M., Kruggel-Emden, H.: An implicit 3D heat transfer model is derived to represent resolved heat conduction within spherical and nonspherical particles in the presence of a surrounding fluid. Powder Technol. 291, 392–407 (2016)

    Article  Google Scholar 

  21. Cheng, G.J., Yu, A.B., Zulli, P.: Evaluation of effective thermal conductivity from the structure of a packed bed. Chem. Eng. Sci. 54, 4199–4209 (1999)

    Article  Google Scholar 

  22. Yun, T.S., Matthew, Evans T.: Three-dimensional random network model for thermal conductivity in particulate materials. Comput. Geotech. 37, 991–998 (2010)

    Article  Google Scholar 

  23. Feng, Y.T., Han, K., Owen, D.R.J.: Discrete thermal element modeling of heat conduction in particle systems: pipe-network model and transient analysis. Powder Technol. 193, 248–256 (2009)

    Article  Google Scholar 

  24. Randrianalisoa, J., Baillis, D., Martin, C.L., Dendievel, R.: Microstructure effects on thermal conductivity of open-cell foams generated from the Laguerre–Voronoi tessellation method. Int. J. Therm. Sci. 98, 277–286 (2015)

    Article  Google Scholar 

  25. Osama, J.K.: Discrete modeling of heat transfer. Thesis of master of science, University of Glasgow (2010)

  26. Liu, J.X., Deng, S.C., Zhang, J., Liang, N.G.: Lattice type of fracture model for concrete. Theor. Appl. Fract. Mech. 48, 269–284 (2007)

    Article  Google Scholar 

  27. Prado, E.P., van Mier, J.G.M.: Effect of particle structure on mode I fracture process in concrete. Eng. Fract. Mech. 70, 1793–1807 (2003)

    Article  Google Scholar 

  28. van Mier, J.G.M., van Vliet, M.R.A., Wang, T.K.: Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mech. Mater. 34, 705–724 (2002)

    Article  Google Scholar 

  29. D’Addetta, G.A., Kun, F., Ramm, E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4(2), 77–90 (2002)

    Article  MATH  Google Scholar 

  30. Moukarzel, C., Herrmann, H.J.: A vectorizable random lattice. J. Stat. Phys. 68, 911–923 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Karihaloo, B.L., Shao, P.F., Xiao, Q.Z.: Lattice modelling of the failure of particle composites. Eng. Fract. Mech. 70, 2385–2406 (2003)

    Article  Google Scholar 

  32. Shoarian, S.A., Toker, N.K.: Obtaining soil–water characteristic curves by numerical modeling of drainage in particulate media. Comput. Geotech. 74, 196–210 (2016)

    Article  Google Scholar 

  33. Nikolic, M., Karavelic, E., Ibrahimbegovic, A., Miscevic, P.: Lattice element models and their peculiarities. Arch. Comput. Methods Eng. (2017). doi:10.1007/s11831-017-9210-y

    Google Scholar 

  34. Ince, R., Arslan, A., Karihaloo, B.L.: Lattice modelling of size effect in concrete strength. Eng. Fract. Mech. 70, 2307–2320 (2003)

    Article  Google Scholar 

  35. Schlangen, E., van Mier, J.G.M.: Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cem. Concr. Comp. 14, 105–18 (1992)

    Article  Google Scholar 

  36. Schlangen, E.: Experimental and numerical analysis of fracture processes in concrete. PhD thesis, Delft University of Technology, The Netherlands (1993)

  37. Saxena, K.K., Das, R., Calius, E.P.: Three decades of auxetics research-materials with negative Poisson’s ratio: a review. Adv. Eng. Mater. 18(11), 1847–1870 (2016). doi:10.1002/adem.201600053

  38. Topin, V., Delenne, J.Y., Radjai, F.: Lattice element method. Laboratoire de M’ecanique et G’enie Civil, CNRS - Universit’e Montpellier 2, Place Eug‘ene Bataillon, 34095 Montpellier cedex 05

  39. Wuttke, F., Sattari, A.S., Rizvi, Z.H., Motra, H.B.: Advanced Meso-Scale Modelling to Study the Effective Thermo-Mechanical Parameter in Solid Geomaterial. Springer Series in Geomechanics and Geoengineering (2016). doi:10.1007/978-3-319-52773-4_9

  40. Almqvist, B.S.G., Burg, J.-P., Berger, J., Burlini, L.: Seismic properties of the Kohistan oceanic arc root: Insights from laboratory measurements and thermodynamic modeling. American Geophysical Union. Volume 14, Number 6, P:1819-1841 (2013)

Download references

Acknowledgements

The corresponding author, A. S. Sattari, received a research grant from Federal state funding at Kiel University and the second author, Z. H. Rizvi, received a grant from Federal Ministry of Economic Affairs and Energy, project “DuoFill” (ZIM Grant Number KF3067303KI3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sattari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattari, A.S., Rizvi, Z.H., Motra, H.B. et al. Meso-scale modeling of heat transport in a heterogeneous cemented geomaterial by lattice element method. Granular Matter 19, 66 (2017). https://doi.org/10.1007/s10035-017-0751-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0751-4

Keywords

Navigation