Skip to main content

Advertisement

Log in

Aggregation of Kanamycin A: dimer formation with physiological cations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Global cluster geometry optimization has focused so far on clusters of atoms or of compact molecules. We are demonstrating here that present-day techniques also allow to globally optimize clusters of extended, flexible molecules, and that such studies have immediate relevance to experiment. For example, recent experimental findings point to production of larger clusters of an aminoglycoside closely related to Kanamycin A (KA), together with certain preferred physiological cations, by Pseudomonas aeruginosa. The present study provides first theoretical support for KA clustering, with a close examination of the monomer, the bare dimer, and dimers with sodium and potassium cations, employing global cluster structure optimization, in conjunction with force fields, semiempirical methods, DFT and ab-initio approaches. Interestingly, already at this stage the theoretical findings support the experimental observation that sodium cations are preferred over potassium cations in KA clusters, due to fundamentally different cationic embedding. Theoretically predicted NMR and IR spectra for these species indicate that it should be possible to experimentally detect the aggregation state and even the cationic embedding mode in such clusters.

Kanamycin A

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Campbell EEB, Larsson M (eds) (2000) The physics and chemistry of clusters, no. 117 in Proc of Nobel Symposium. World Scientific

  2. Johnston RL (2002) Atomic and molecular clusters. Taylor and Francis, New York

  3. Catlow CRA, Bromley ST, Hamad S, Mora-Fonz M, Sokol AA, Woodley SM (2010) Phys Chem Chem Phys 12:786

    Article  CAS  Google Scholar 

  4. DJ Wales (2003) Energy landscapes. Cambridge University Press, Cambridge

  5. Hartke B (2002) Angew Chem Int Ed 41:1468

    Article  CAS  Google Scholar 

  6. The cambridge cluster database. http://www-wales.ch.cam.ac.uk/CCD.html

  7. Görbitz CH, Dalhus B, Day GM (2010) Phys Chem Chem Phys 12:8466

    Article  Google Scholar 

  8. Kim S, Orendt AM, Ferraro MB, Facelli JC (2009) J Comput Chem 30:1973

    Article  CAS  Google Scholar 

  9. Karamertzanis PG, Kazantsev AV, Issa N, Welch GWA, Adjiman CS, Panetlides CC, Price SL (2009) J Chem Theor Comput 5:1432

    Article  CAS  Google Scholar 

  10. Schröder JM, Harder J (2006) Cell Mol Life Sci 63:469

    Article  Google Scholar 

  11. Harder J, Meyer-Hoffert U, Teran LM, Schwichtenberg L, Bartels J, Maune S, Schröder JM (2000) Am J Respir Cell Mol Biol 22:714

    CAS  Google Scholar 

  12. Puius YA, Stievater TH, Srikrishnan T (2006) Carbohydr Res 341:2871

    Article  CAS  Google Scholar 

  13. D’Amelia N, Gaggelli E, Gaggelli N, Molteni E, Baratto MC, Valensin G, Jezowska-Bojczuk M, Szczepanik W (2004) Dalton Trans. p. 363

  14. Lu XQ, Zhang M, Kang JW, Wang XQ, Zhuo L, Liu HD (2004) J Inorg Biochem 98:582

    Article  CAS  Google Scholar 

  15. Lesniak W, Harris WR, Kravitz JY, Schacht J, Pecoraro VL (2003) Inorg Chem 42:1420

    Article  CAS  Google Scholar 

  16. Kopaczynska M, Lauer M, Schulz A, Wang T, Schaefer A, Fuhrhop JH (2004) Langmuir 20:9270

    Article  CAS  Google Scholar 

  17. Hermann T, Westhof E (1999) J Med Chem 42:1250

    Article  CAS  Google Scholar 

  18. Moitessier N, Westhof E, Henssian S (2006) J Med Chem 49:1023

    Article  CAS  Google Scholar 

  19. Huang L, Massa L, Karle J (2007) Proc Nat Amer Soc 104:4261

    Article  CAS  Google Scholar 

  20. Monajjemi M, Heshmata M, Haeria HH (2006) Biochem (Moscow) 71:S113

    Article  CAS  Google Scholar 

  21. Dieterich JM, Hartke B (2010) Mol Phys 108:279

    Article  CAS  Google Scholar 

  22. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Kluwer, Dordrecht

  23. Bandow B, Hartke B (2006) J Phys Chem A 110:5809

    Article  CAS  Google Scholar 

  24. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossv´ary I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) Amber 10, Univ California, San Francisco

  25. Stewart, JJP (2009) Mopac, version 10.055l

  26. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M et al (2010) Molpro, development version, a package of ab initio programs

  27. Orca: an ab initio, DFT and semiempirical electronic structure package

  28. Jmol: an open-source java viewer for chemical structures in 3d. http://www.jmol.org

  29. Pov-ray - the persistence of vision raytracer. www.povray.org

  30. Jackson KA, Horoi M, Chaudhuri I, Frauenheim T, Jackson KA (2004) Phys Rev Lett 93:013401

    Article  Google Scholar 

  31. Dudev T, Lim C (2010) J Am Chem Soc 132:2321

    Article  CAS  Google Scholar 

  32. Eriksson M, Lindhorst TK, Hartke B (2008) J Chem Phys 128:105105

    Article  Google Scholar 

  33. Schulz F, Hartke B (2002) Chem Phys Chem 3:98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.H. would like to thank the German Research Foundation (DFG) for strong financial support via grant Ha-2498/10. J.M.D. and B.H. thank the North-German Supercomputing Alliance (HLRN) for a generous grant of computer time, and would like to acknowledge the friendly and competent efforts of the HLRN support staff. J.M.D. would like to acknowledge Mats Eriksson for hints on AMBER’s (fixed) input formatting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hartke.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieterich, J.M., Gerstel, U., Schröder, JM. et al. Aggregation of Kanamycin A: dimer formation with physiological cations. J Mol Model 17, 3195–3207 (2011). https://doi.org/10.1007/s00894-011-0983-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0983-x

Keywords

Navigation