Skip to main content
Log in

Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates

  • Published:
Computing and Visualization in Science

Abstract

Many matrices appearing in numerical methods for partial differential equations and integral equations are rank-structured, i.e., they contain submatrices that can be approximated by matrices of low rank. A relatively general class of rank-structured matrices are \({\mathcal {H}}^2\)-matrices: they can reach the optimal order of complexity, but are still general enough for a large number of practical applications. We consider algorithms for performing algebraic operations with \({\mathcal {H}}^2\)-matrices, i.e., for approximating the matrix product, inverse or factorizations in almost linear complexity. The new approach is based on local low-rank updates that can be performed in linear complexity. These updates can be combined with a recursive procedure to approximate the product of two \({\mathcal {H}}^2\)-matrices, and these products can be used to approximate the matrix inverse and the LR or Cholesky factorization. Numerical experiments indicate that the new algorithm leads to preconditioners that require \({\mathcal {O}}(n)\) units of storage, can be evaluated in \({\mathcal {O}}(n)\) operations, and take \({\mathcal {O}}(n \log n)\) operations to set up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bebendorf, M., Hackbusch, W.: Existence of \({\cal H}\)-matrix approximants to the inverse FE-matrix of elliptic operators with \(L^{\infty }\)-coefficients. Numer. Math. 95, 1–28 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Börm, S.: \({\cal H}^2\)-matrix arithmetics in linear complexity. Computing 77(1), 1–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Börm, S.: Adaptive variable-rank approximation of dense matrices. SIAM J. Sci. Comp. 30(1), 148–168 (2007)

    Article  MATH  Google Scholar 

  5. Börm, S.: Data-sparse approximation of non-local operators by \({\cal H}^2\)-matrices. Lin. Algebra Appl. 422, 380–403 (2007)

    Article  MATH  Google Scholar 

  6. Börm, S.: Approximation of solution operators of elliptic partial differential equations by \({\cal H}\)- and \({\cal H}^{2}\)-matrices. Numer. Math. 115(2), 165–193 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Börm, S.: Efficient Numerical Methods for Non-local Operators: \({\cal H}^{2}\)-Matrix Compression, Algorithms and Analysis. EMS Tracts in Mathematics, vol. 14, (2010)

  8. Börm, S., Hackbusch, W.: Data-sparse approximation by adaptive \({\cal H}^2\)-matrices. Computing 69, 1–35 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Börm, S., Löhndorf, M., Melenk, J.M.: Approximation of integral operators by variable-order interpolation. Numer. Math. 99(4), 605–643 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chandrasekaran, S., Gu, M., Lyons, W.: A fast adaptive solver for hierarchically semiseparable representations. Calcolo 42, 171–185 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Faustmann, M., Melenk, J.M., Praetorius, D.: Existence of \({\cal H}\)-matrix approximants to the inverses of BEM matrices: the simple-layer operator. Tech. Rep. 37, Institut für Analysis und Scientific Computing, TU Wien (2013). http://www.asc.tuwien.ac.at/preprint/2013/asc37x2013.pdf

  12. Faustmann, M., Melenk, J.M., Praetorius, D.: \({\cal H}\)-matrix approximability of the inverse of FEM matrices. Tech. Rep. 20, Institut für Analysis und Scientific Computing, TU Wien (2013). http://www.asc.tuwien.ac.at/preprint/2013/asc20x2013.pdf

  13. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\cal H}\)-matrices. Computing 70, 295–334 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grasedyck, L., Kriemann, R., LeBorne, S.: Domain decomposition based \({\cal H}\)-LU preconditioning. Numer. Math. 112(4), 565–600 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hackbusch, W.: A sparse matrix arithmetic based on \({\cal H}\)-matrices. Part I: introduction to \({\cal H}\)-matrices. Computing 62, 89–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hackbusch, W.: Hierarchische Matrizen—Algorithmen und Analysis. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  17. Hackbusch, W., Khoromskij, B.N.: A sparse matrix arithmetic based on \({\cal H}\)-matrices. Part II: application to multi-dimensional problems. Computing 64, 21–47 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \({\cal H}^{2}\)-matrices. In: Bungartz, H., Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)

    Chapter  Google Scholar 

  19. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. B. Stand. 49(6), 409–436 (1952)

  20. Lintner, M.: The eigenvalue problem for the 2d Laplacian in \({\cal H}\)-matrix arithmetic and application to the heat and wave equation. Computing 72, 293–323 (2004)

  21. Martinsson, P.G.: A fast direct solver for a class of elliptic partial differential equations. J. Sci. Comput. 38, 316–330 (2008)

    Article  MathSciNet  Google Scholar 

  22. Martinsson, P.G., Rokhlin, V., Tygert, M.: A fast algorithm for the inversion of general Toeplitz matrices. Comp. Math. Appl. 50, 741–752 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Xia, J., Chandrasekaran, S., Gu, M., Li, X.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31(3), 1382–1411 (2009)

    Article  MathSciNet  Google Scholar 

  24. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable matrices. Numer. Lin. Alg. Appl. (2009). doi:10.1002/nla.691

Download references

Acknowledgments

A major part of this research was funded by the Deutsche Forschungsgemeinschaft in the context of project BO 3289/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Börm.

Additional information

Communicated by Gabriel Wittum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Börm, S., Reimer, K. Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates. Comput. Visual Sci. 16, 247–258 (2013). https://doi.org/10.1007/s00791-015-0233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-015-0233-3

Keywords

Navigation