Skip to main content
Log in

Zircon geochronology, elemental and Sr-Nd isotope geochemistry of two Variscan granitoids from the Odenwald-Spessart crystalline complex (mid-German crystalline rise)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The crystalline parts of the Bergsträsser (western) Odenwald and the southern Spessart expose Variscan I-type granitoids of the mid-German crystalline rise that formed during subduction of the Rheic ocean and collision of Avalonia and Armorica about 365 and 330 Ma ago. We present geochemical, Sr-Nd isotopic, single zircon 207Pb/206Pb evaporation and conventional U-Pb data from a diorite-granodiorite complex of the southern Spessart and from a flasergranitoid of the Bergsträsser Odenwald unit II. Both intrusions provide almost identical zircon ages (332.4 ± 1.6 Ma for Odenwald and 330.4 ± 2.0 Ma for Spessart). Lack of inherited or pre-magmatic zircon components connotes magma genesis in deep crustal hot zones despite low temperature estimates (758–786 °C) derived from zircon saturation thermometry. Investigated rock samples display normal- to high-K calc-alkaline metaluminous (Spessart) and weakly peraluminous (Odenwald) geochemical characteristics. The Spessart pluton has lower εNd(T) values (−2.3 to −3.0) and higher 87Sr/86Sri ratios (0.7060 to 0.7066) compared to Odenwald flasergranitoid (εNd(T) = −0.8 and 87Sr/86Sri = 0.7048). In terms of the tectonic setting, the diorite-granodiorite complex of the southern Spessart forms the continuation of the north Armorican arc segment exposed in the Bergsträsser Odenwald. Taking into account previously reported geochemical and isotopic results, it is concluded that the Spessart pluton does not match compositions of Odenwald unit II granitoids but likely represents the north-eastward extension of unit III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen CM (1993) A nested diapir model for the reversely zone Turtle pluton, southeastern California. Trans R Soc Edinb Earth Sci 83:179–190

    Article  Google Scholar 

  • Altherr R, Henes-Klaiber U, Hegner E, Satir M, Langer C (1999) Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int J Earth Sci 88:422–443

    Article  Google Scholar 

  • Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodynamics 31:119–143

    Article  Google Scholar 

  • Bederke E (1957) Alter und Metamorphose des kristallinen Grundgebirges im Spessart. Abh Hess L-Amt Bodenforsch 18:7–19

    Google Scholar 

  • Behr HJ, Heinrichs T (1987) Geological interpretation of DEKORP 2-S: a deep seismic reflection profile across the Saxothuringian and possible implications for the late Variscan structural evolution of central Europe. Tectonophysics 142:173–202

    Article  Google Scholar 

  • Birck JL (1986) Precision K–Rb–Sr isotopic analysis: application to Rb–Sr chronology. Chem Geol 56:73–83

    Article  Google Scholar 

  • Braitsch O (1957a) Beitrag zur Kenntnis der kristallinen Gesteine des südlichen Spessarts und ihrer geologisch-tektonischen Geschichte. Abh Hess L-Amt Bodenforsch 18:21–72

    Google Scholar 

  • Braitsch O (1957b) Zur Petrographie und Tektonik des Biotitgneises im südlichen Vorspessart. Abh Hess L-Amt Bodenforsch 18:73–99

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Austr J Earth Sci 48:489–499

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Dombrowski A, Okrusch M, Henjes-Kunst F (1994) Geothermobarometry and geochronology on mineral assemblages of orthogneisses and related metapelites of the Spessart crystalline complex, NW Bavaria, Germany. Chem Erde 54:85–101

    Google Scholar 

  • Dombrowski A, Henjes-Kunst F, Höhndorf A, Kröner A, Okrusch M, Richter P (1995) Orthogneisses in the Spessart crystalline complex, North-West Bavaria—Silurian granitoid magmatism at an active continental-margin. Geol Rdsch 84:399–411

    Article  Google Scholar 

  • Faure M, Sommers C, Melleton J, Cocherie A, Lautout O (2010) The Léon domain (French massif Armoricain): a westward extension of the mid-German crystalline rise? Structural and geochronological insights. Int J Earth Sci 99:65–81

    Article  Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    Article  Google Scholar 

  • Franke W (2000) The mid European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt: Geol Soc London Spec Publ 179:35–62

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Hanchar JM, Watson EB (2003) Temperature saturation temperature. In: Hanchar JM, Hoskin PWO (eds) Zircon: Rev Mineral Geochem 53:89–112

  • Hann HP, Chen F, Zedler H, Frisch W, Löschke J (2003) The Rand granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci 92:821–842

    Article  Google Scholar 

  • Harley SL, Kelly M, Möller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3:25–30

    Article  Google Scholar 

  • Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35:635–638

    Article  Google Scholar 

  • Henes-Klaiber U (1992) Zur Geochemie der Variscischen Granitoide des Bergsträsser Odenwaldes. PhD Thesis Univ Karlsruhe 264 pp

  • Hirschmann G, Okrusch M (2001) Spessart unf Rhön (18)—Teil der MKZ. In: Stratigraphie von Deutschland II. Ordovizium, Kambrium, Vendium, Riphäikum. Teil II: Baden-Württemberg, Bayern, Hessen, Rheinland-Pfalz, Nordthüringen, Sachsen-Anhalt, Brandenburg. Courier Forschungsinstitut Senckenberg (CFS) 234:93–108

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    Article  Google Scholar 

  • Kemp A, Whitehouse M, Hawkesworth C, Alarcon M (2005) A zircon U-Pb study of metaluminous (I-type) granites of the Lachlan fold belt, southeastern Australia: implications for the high/low temperature classification and magma differentiation processes. Contrib Mineral Petrol 150:230–249

    Article  Google Scholar 

  • Kirsch H, Kober B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW-Germany) evidenced by 40Ar/39Ar and single-zircon 207Pb/206Pb measurements. Geol Rdsch 77:693–711

    Article  Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion-source. Contrib Mineral Petrol 93:482–490

    Article  Google Scholar 

  • Kober B (1987) Single-zircon evaporation combined with Pb+ emitter bedding for 207Pb/206Pb-age investigations using thermal ion mass-spectrometry, and implications to zirconology. Contrib Mineral Petrol 96:63–71

    Article  Google Scholar 

  • Kreher B (1994) Petrologie und Geochemie der Gabbrointrusionen des Frankensteins (Odenwald). Geol Jb Hessen 122:81–122

    Google Scholar 

  • Kreuzer H, Harre W (1975) K/Ar-Altersbestimmungen an Hornblenden und Biotiten des kristallinen Odenwaldes. Aufschluss 27:71–78

    Google Scholar 

  • Krohe A (1991) Emplacement of synkinematic plutons in the Variscan Odenwald (Germany) controlled by transtensional tectonics. Geol Rdsch 80:391–409

    Article  Google Scholar 

  • Krohe A (1992) Structural evolution of intermediate-crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW Germany)—differential upward transport of metamorphic complexes and changing deformation mechanisms. Tectonophysics 205:357–386

    Article  Google Scholar 

  • Krohe A (1994) Verformungsgeschichte in der mittleren Kruste eines magmatischen Bogens, - der variszische Odenwald als Modellregion. Geotekt Forsch 80:1–147

    Google Scholar 

  • Krohe A (1996) Variscan tectonics of central Europe: postaccretionary intraplate deformation of weak continental lithosphere. Tectonics 15:1364–1388

    Article  Google Scholar 

  • Kroner U, Mansy J-L, Mazur S, Aleksandrowski P, Hann HP, Huckriede H, Lacquement F, Lamarche J, Ledru P, Pharaoh TC, Zedler H, Zeh A, Zulauf G (2008) Variscan tectonics. In: McCann T (ed) The geology of Central Europe, vol. 1. Geological Society, London, pp 599–664

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of central-Europe—indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    Article  Google Scholar 

  • Linnemann U, McNaughton N, Romer R, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705

    Article  Google Scholar 

  • Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb-Sr) und karbonischer Abkühlalter (K-Ar) der Muskovit-Biotit-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geol Rdsch 75:569–583

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot 3.00 a geochronological toolkit for Microsoft Excel

  • McKerrow WS, Ziegler AM (1972) Palaeozoic oceans. Nature Phys Sci 240:92–94

    Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Article  Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Metamorph Geol 20:727–740

    Article  Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh temperature granulites of Rogaland (SW Norway). In: Vance D, Müller W, Villa IM (eds) Geochronology: Linking the isotopic record with petrology and textures: Geol Soc London Spec Publ 220:65–81

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic ocean. Gondw Res 17:194–222

    Article  Google Scholar 

  • Nasir S, Okrusch M, Kreuzer H, Lenz H, Höhndorf A (1991) Geochronology of the Spessart crystalline complex, mid-German crystalline rise. Mineral Petrol 44:39–55

    Article  Google Scholar 

  • Nickel E, Maggetti M (1974) Magmengenese und Dioritbildung im synorogen konsolidierten Grundgebirge des Bergsträßer Odenwaldes. Geol Rdsch 63:618–654

    Article  Google Scholar 

  • Okay AI, Satir M, Siebel W (2006) Pre-Alpine and Mesozoic orogenic events in the eastern Mediterranean region. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc London, Mem 32:389–405

  • Okay N, Zack T, Okay AI, Barth M (2011) Sinistral transport along the Trans-European suture zone: detrital zircon-rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides. Geol Mag 148:380–403

    Article  Google Scholar 

  • Okrusch M (1963) Bestandsaufnahme und Deutung dioritartiger Gesteine im südlichen Vorspessart. Ein Beitrag zum Dioritproblem. Geol Bavarica 51:4–107

    Google Scholar 

  • Okrusch M, Richter P (1986) Orthogneisses of the Spessart crystalline complex, northwest Bavaria—indicators of the geotectonic environment. Geol Rdsch 75:555–568

    Article  Google Scholar 

  • Okrusch M, Geyer G, Lorenz J (2011) Spessart. Sammlung geol Führer 106:1–368

    Google Scholar 

  • Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the European Variscides. Geol Rdsch 86:2–20

    Article  Google Scholar 

  • Oncken O (1998) Evidence for precollisional subduction erosion in ancient collisional belts: the case of the mid-European Variscides. Geology 26:1075–1078

    Article  Google Scholar 

  • Paterson SR, Vernon RH (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geol Soc Am Bull 107:1356–1380

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Pin C, Paquette JL (2002) Le magmatisme basique calcoalcalin d’âge dévono–dinantien du nord du Massif Central, témoin d’une marge active hercynienne: arguments géochimiques et isotopiques Sr/Nd. Geodinamica Acta 15:63–77

    Google Scholar 

  • Poller U, Janak M, Kohut M, Todt W (2000) Early Variscan magmatism in the western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra mountains (Slovakia). Int J Earth Sci 89:336–349

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Richard P, Shimizu N, Allègre CJ (1976) 143Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278

    Article  Google Scholar 

  • Schälicke W (1975) Die Otzberg-Zone. Aufschluß Sonderbd 27:47–57

    Google Scholar 

  • Schaltegger U (1997) Magma pulses in the central Variscan belt: episodic melt generation and emplacement during lithospheric thinning. Terra Nova 9:242–245

    Article  Google Scholar 

  • Scherer EE, Mezger K, Münker C (2002) Lu-Hf ages of high pressure metamorphism in the Variscan fold belt of southern Germany. Geochim Cosmochim Acta 66:A677

    Google Scholar 

  • Schubert W, Lippolt HJ, Schwarz W (2001) Early to middle Carboniferous hornblende 40Ar/39Ar ages of amphibolites and gabbros from the Bergsträsser Odenwald. Mineral Petrol 72:113–132

    Article  Google Scholar 

  • Shaw A, Downes H, Thirlwall MF (1993) The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central. Chem Geol 107:1–18

    Article  Google Scholar 

  • Siebel W (1998) Variszischer spät-bis postkollisionaler Plutonismus in Deutschland: Regionale Verbreitung, Stoffbestand und Altersstellung. Z Geol Wiss 26:329–358

    Google Scholar 

  • Siebel W, Chen F, Satir M (2003) Late Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schöne B, Tubrett MN, Whitehouse MJ (2008) Plesovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. Geol Soc Am Spec Pap 364:263–280

    Google Scholar 

  • Stein E (2000) Zur Platznahme von Granitoiden – vergleichende Fallstudien zu Gefügen und Platznahmemechanismen aus den White-Inyo Mountains, California, USA, und dem Bergsträßer Odenwald. Geotektonische Forschungen 93:1–344

    Google Scholar 

  • Stein E (2001a) Die magmatischen Gesteine des Bergsträßer Odenwaldes und ihre Platznahme-Geschichte. Jber Mitt oberrhein geol Ver NF 83:267–283

    Google Scholar 

  • Stein E (2001b) The geology of the Odenwald crystalline complex. Mineral Petrol 72:7–28

    Article  Google Scholar 

  • Timmerman MJ (2008) Palaeozoic magmatism. In: McCann T (ed) The geology of central Europe, vol 1: Precambrian and Palaeozoic. Geol Soc London, 665–748

  • Todt WA, Altenberger U, von Raumer JF (1995) U-Pb data on zircons for the thermal peak of metamorphism in the Variscan Odenwald, Germany. Geol Rdsch 84:466–472

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Weber K (1995) The Spessart crystalline complex. In: Dalmeyer R, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 167–173

    Google Scholar 

  • Will TM, Schmädicke E (2001) A first find of retrogressed eclogues in the Odenwald crystalline complex, mid-German crystalline rise, Germany: evidence for a so far unrecognised high-pressure metamorphism in the central Variscides. Lithos 59:109–125

    Article  Google Scholar 

  • Will TM, Schmädicke E (2003) Isobaric cooling and anti-clockwise P-T paths in the Variscan Odenwald crystalline complex, Germany. J Metamorph Geol 21:469–480

    Article  Google Scholar 

  • Willner AP, Massonne HJ, Krohe A (1991) Tectonothermal evolution of a part of a Variscan magmatic arc—the Odenwald in the mid-German crystalline rise. Geol Rdsch 80:369–389

    Article  Google Scholar 

  • Xiang W, Griffin WL, Jie C, Pinyun H, Xiang LI (2011) U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients. Acta Geol Sin 85:164–174

    Article  Google Scholar 

  • Žák J, Kratinová Z, Trubač J, Janoušek V, Sláma J, Mrlina J (2010) Structure, emplacement, and tectonic setting of late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif. Int J Earth Sci. doi:10.1007/s00531-010-0565-7

  • Zeh A, Will TM (2010) The mid-German crystalline zone. In: Linnemann U, Romer R (eds) Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian active margin to the Variscan Orogen. Schweitzerbart, Stuttgart, pp 195–220

    Google Scholar 

  • Zeh A, Gerdes A, Will TM, Millar IL (2005) Provenance and magmatic-metamorphic evolution of a Variscan island-arc complex: constraints from U-Pb dating, petrology, and geospeedometry of the Kyffhäuser crystalline complex, central Germany. J Petrol 46:1393–1420

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Landesamt für Umwelt, Augsburg. We thank Elmar Reitter and Heiner Taubald for support during XRF, Rb-Sr and Sm-Nd isotope analyses. Alexander Krohe, Andreas Möller and an anonymous referee provided constructive comments and suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Siebel.

Additional information

Editorial handling: A. Möller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebel, W., Eroğlu, S., Shang, C.K. et al. Zircon geochronology, elemental and Sr-Nd isotope geochemistry of two Variscan granitoids from the Odenwald-Spessart crystalline complex (mid-German crystalline rise). Miner Petrol 105, 187–200 (2012). https://doi.org/10.1007/s00710-012-0200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0200-3

Keywords

Navigation