Skip to main content

Advertisement

Log in

Possible solutions to several enigmas of Cretaceous climate

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The nature of the warm climates of the Cretaceous has been enigmatic since the first numerical climate models were run in the late 1970s. Quantitative simulations of the paleoclimate have consistently failed to agree with information from plant and animal fossils and climate sensitive sediments. The ‘cold continental interior paradox’ (first described by DeConto et al. in Barrera E, Johnson C (eds) Evolution of the Cretaceous Ocean/climate system, vol 332. Geological Society of America Special Paper, Boulder, pp 391–406, 1999), has been an enigma, with extensive continental interiors, especially in northeast Asia, modeled as below freezing in spite of plant and other evidence to the contrary. We reconsider the paleoelevations of specific areas, particularly along the northeastern Siberian continental margin, where paleofloras indeed indicate higher temperatures than suggested by current climate models. Evidence for significant masses of ice on land during even the otherwise warmest times of the Cretaceous is solved by reinterpretation of the δ18O record of fossil plankton. The signal interpreted as an increase in ice volume on land is the same as the signal for an increase in the volume of groundwater reservoirs on land. The problem of a warm Arctic, where fossil floras indicate that they never experienced freezing conditions in winter, could not be solved by numerical simulations using higher CO2 equivalent greenhouse gas concentrations. We propose a solution by assuming that paleoelevations were less than today and that there were much more extensive wetlands (lakes, meandering rivers, swamps, bogs) on the continents than previously assumed. Using ~ 8 × CO2 equivalent greenhouse gas concentrations and assuming 50–75% water surfaces providing water vapor as a supplementary greenhouse gas on the continents reduces the meridional temperature gradients. Under these conditions the equatorial to polar region temperature gradients produce conditions compatible with fossil and sedimentological evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Adapted from Hay and Floegel (2012)

Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alder JR, Hostetler SW, Pollard D, Schmittner A (2011) Evaluation of a present-day climate simulation with a new coupled atmosphere–ocean model GENMOM. Geosci Model Dev 4:69–83

    Google Scholar 

  • Alley NF, Frakes LA (2003) First known Cretaceous glaciation: Livingston Tillite Member of the Cadna-owie Formation, South Australia. Aust J Earth Sci 50:139–144

    Google Scholar 

  • Armor AB, Vereshchagin VN, Vinogradov AP (eds) (1966) Атлас литолого-палеографических карт СССР. Том 3. Триасовый, юрский и меловой периоды (Atlas of the Lithological–Paleogeographical Maps of the USSR. vol III: Triassic, Jurassic and Cretaceous Periods), p 80

  • Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present, pp 504–529

  • Balukhovsky A, Floegel S, Hay WW, Madison A, Wold CN (2004) A paleogeographic map for the Lower Turonian. https://earthref.org/ERDA/220/

  • Barclay RS, Wing SL (2016) Improving the Ginkgo CO2 barometer: implications for the early Cenozoic atmosphere. Earth Planet Sci Lett 439:158–171

    Google Scholar 

  • Barron EJ (1983) Warm, equable Cretaceous, the nature of the problem. Earth Sci Rev 19:305–338

    Google Scholar 

  • Barron EJ, Washington WM (1982) Atmospheric circulation during warm geologic periods: is the equator-to-pole surface-temperature gradient the controlling factor? Geology 10:633–636

    Google Scholar 

  • Barron EJ, Washington WM (1984) The role of geographic variables in explaining paleoclimates; results from cretaceous climate model sensitivity studies. J Geophys Res 89:1267–1279

    Google Scholar 

  • Barron EJ, Washington WM (1985) Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. In: Sundquist ET, Broecker WS (eds). The carbon cycle and atmospheric CO2: natural variations archean to present, pp 546–553

  • Barron EJ, Thompson SL, Schneider SH (1981a) An ice-free Cretaceous? Results from climate model simulations. Science 212:501–508

    Google Scholar 

  • Barron EJ, Harrison CGA, Sloan JL II, Hay WW (1981b) Paleogeography, 180 million years ago to the present. Ecl Geol Helvetiae 74:443–470

    Google Scholar 

  • Barron EJ, Peterson WH, Pollard D, Thompson S (1993a) Past climate and the role of ocean heat transport: model simulations for the Cretaceous. Paleoceanography 8:785–798

    Google Scholar 

  • Barron EJ, Fawcett PJ, Pollard D, Thompson S (1993b) Model simulations of Cretaceous climates: the role of geography and carbon dioxide [and Discussion]. Philos Trans R Soc Lond B Biol Sci 341:307–316

    Google Scholar 

  • Barron EJ, Fawcett PJ, Peterson WH, Pollard D, Thompson SL (1995) A ‘simulation’ of Mid-Cretaceous climate. Paleoceanography 10:953–962

    Google Scholar 

  • Bely VF (1997) The North Pacific refugium, and the problems of paleofloristics of the Middle Cretaceous in northeastern Asia. Pac Ocean Geol 16/6:102–113 (in Russian: (Белый, В.Ф. (1997) Северо-Тихоокеанский рефугиум и проблемы палеофлоры среднего мела в северо-восточной Азии. Тихокеанская Геология 16/6: 102–113)

    Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    Google Scholar 

  • Bice KL, Norris RD (2002) Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian–Turonian). Paleoceanography. https://doi.org/10.1029/2002PA000778

    Google Scholar 

  • Bice KL, Huber BT, Norris RD (2003) Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography 18(1301):9:1–7. https://doi.org/10.1029/2002PA000848

    Google Scholar 

  • Bice K, Birgel D, Meyers PA, Dahl KA, Hinrichs K-U, Norris RD (2006) A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21:17. https://doi.org/10.1029/2005PA001203. PA2002

    Google Scholar 

  • Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201. https://doi.org/10.3389/fmicb.2013.00201

    Google Scholar 

  • Budyko MI, Ronov AB (1979) Evolution of the atmosphere in the Phanerozoic. Geochemistry 5:643–653 (in Russian: Будыко MИ., Ронов АБ (1979) Эволюция атмосферы в фанерозое. Геохимия. №5: 643–653)

    Google Scholar 

  • Budyko MI, Ronov AB (1987) History of the earth’s atmosphere. Springer, Heidelberg, 139 pp

    Google Scholar 

  • Budyko MI, Ronov AB, Yanshin AL (1985) History of the atmosphere. Gidrometeoizdat 1985:207 (in Russian: Будико, MИ Ронов, АБ Яншин АЛ (1985) История атмосферы. Гидрометеоиздать, 207 C.)

    Google Scholar 

  • Callander RA (1969) Instability and river channels. J Fluid Mech 36:465–480

    Google Scholar 

  • Callander RA (1978) River meandering. Annu Rev Fluid Mech 10:129–158

    Google Scholar 

  • Cantrill DJ, Hunter MA (2005) Macrofossil floras of the Latady Basin, Antarctic Peninsula. NZ J Geol Geophys 48:537–553

    Google Scholar 

  • Chen L-Q, Li C-S, Chaloner WG, Beerling DJ, Sun Q-G, Collinson ME, Mitchell PL (2001) Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am J Bot 88:1309–1315

    Google Scholar 

  • Chumakov NM (1995) The problem of the warm biosphere. Stratigr Geol Correl 3:205–215

    Google Scholar 

  • Chumakov NM (2004) Climatic zones and climate of the Cretaceous period. In: Semikhatov MA, Chumakov NM (eds) Climate in the epochs of major biospheric transformations. Transactions of the Geological Institute of the Russian Academy of Sciences, vol 550. Nauka, Moscow, pp 105–123 (in Russian)

    Google Scholar 

  • Chumakov NM, Zharkov MA, Herman AB, Doludenko MP, Kalandadze NN, Lebedev EA, Ponomarenko AG, Rautian AS (1995) Climate belts of the Mid-Cretaceous time. Stratigr Geol Correl 3:241–260

    Google Scholar 

  • Cloetingh S, Haq BU (2015) Inherited landscapes and sea level change. Science 347:1258375

    Google Scholar 

  • Conrad CP (2013) The solid Earth’s influence on sea level. GSA Bull 125:1027–1052. https://doi.org/10.1130/B30764.1

    Google Scholar 

  • Constantine JA, Dunne TS, Piégay H, Kondolf GM (2010) Controls on the alluviation of oxbow lakes by bed-material load along the Sacramento River, California. Sedimentology 57:389–407

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci 97:13430–13435

    Google Scholar 

  • Davies NS, Gibling MR, Rygel MC (2011) Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues. Sedimentology 58:220–258

    Google Scholar 

  • DeConto RM (1996) Late Cretaceous climate, vegetation and ocean interactions, an Earth system approach to modeling an extreme climate [Ph.D. Thesis]: Boulder, University of Colorado, p 236

  • DeConto RM, Hay WW, Bergengren JC (1998) Modeling Late Cretaceous climate and vegetation. Zent Geol Paläontol 1996(11/12):1433–1444

    Google Scholar 

  • DeConto RM, Hay WW, Thompson SL, Bergengren J (1999) Late Cretaceous climate and vegetation interactions: the cold continental interior paradox. In: Barrera E, Johnson C (eds) Evolution of the Cretaceous Ocean/climate system, vol 332. Geological Society of America Special Paper, Boulder, pp 391–406

    Google Scholar 

  • DeConto RM, Brady E, Bergengren J, Hay WW (2000a) Late Cretaceous climate, vegetation, and ocean interactions. In: Huber BT, MacLeod KG, Wing SL (eds) Warm Climates in Earth History. Cambridge University Press, Cambridge, pp 275–297

    Google Scholar 

  • DeConto RM, Thompson SL, Pollard D (2000b) Recent advances in paleoclimate modeling: toward better simulations of warm paleoclimates. In: Huber BT, MacLeod KG, Wing SL (eds) Warm Climates in Earth History. Cambridge University Press, Cambridge, pp 21–49

    Google Scholar 

  • DeConto RM, Galeotti S, Pagani M, Tracy D, Schaefer K, Zhang T, Pollard D, Bee DJ (2012a) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484:87–91

    Google Scholar 

  • DeConto RM, Galeotti S, Pagani M, Tracy D, Schaefer K, Zhang T, Pollard D, Bee DJ (2012b) Corrigendum: Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 490:292

    Google Scholar 

  • DeLurio JL, Frakes LA (1999) Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia. Geochim Cosmochim Acta 63:1039–1048

    Google Scholar 

  • DeMeo J (1989) Desert expansion and drought: environmental crisis, Part I. J Orgonom 23:15–26

    Google Scholar 

  • Dewey JF, Burke K (1974) Hot spots and continental breakup: implications for collisional orogeny. Geology 2:57–60

    Google Scholar 

  • Donnadieu Y, Pierrehumbert R, Jacob R, Fluteau F (2006) Modelling the primary control of paleogeography on Cretaceous climate. Earth Planet Sci Lett 248:426–437

    Google Scholar 

  • Donnelly TW (1982) Worldwide continental denudation and climatic deterioration during the late Tertiary: evidence from deep-sea sediments. Geology 10:451–454

    Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Google Scholar 

  • Downing JA, Cole JJ, Duarte CM, Middelburg JJ, Melack JM, Prairie YT, Kortelainen P, Striegl RG, McDowell WH, Tranvik LJ (2012) Global abundance and size distribution of streams and rivers. Inland Waters 2:229–236

    Google Scholar 

  • Ellis RJ (2010) Tackling unintelligent design. Nature 463:164–165

    Google Scholar 

  • Fisk HN (1944) Geological Investigation of the Alluvial Valley of the Lower Mississippi Valley. Mississippi River Commission Publication 1. US Army Corps of Engineers, Vicksburg, p 78 + 33 plates

    Google Scholar 

  • Floegel S, Hay WW, DeConto RM, Balukhovsky AN (2005) Formation of sedimentary bedding couplets in the Western Interior Seaway of North America—implications from climate system modeling. Palaeogeogr Palaeoclimatol Palaeoecol 218:125–143

    Google Scholar 

  • Flögel S (2001) On the influence of precessional Milankovitch cycles on the Late Cretaceous climate system: comparison of GCM-results, geochemical, and sedimentary proxies for the Western Interior Seaway of North America. Doctoral Thesis, Faculty of Mathematics and Natural Sciences of the Christian-Albrecht’s-University, Kiel, Germany, p 236

  • Flögel S, Parkin G, Pollard D, Dullo W-Chr, Wagner T (2010) Simulating zonal scale shifts in the partitioning of surface and subsurface freshwater flow in response to increasing pCO2. Clim Dyn 37:1565–1573. https://doi.org/10.1007/s00382-010-0929-5

    Google Scholar 

  • Flögel S, Wallmann K, Poulsen CJ, Zhou J, Oschlies A, Voigt S, Kuhnt W (2011a) Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2). Earth Planet Sci Lett 305:371–384. https://doi.org/10.1016/j.epsl.2011.03.018

    Google Scholar 

  • Flögel S, Wallmann K, Kuhnt W (2011b) Cool episodes in the Cretaceous—exploring the effects of physical forcings on Antarctic snow accumulation. Earth Planet Sci Lett 307:279–288

    Google Scholar 

  • Frakes LA, Francis JE (1988) A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature 333:547–549

    Google Scholar 

  • Francis JE, Poole I (2002) Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeogr Palaeoclimatol Palaeoecol 182:47–64

    Google Scholar 

  • Francis JE, Pirrie D, Crame JA (eds) (2006) Cretaceous-tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica, vol 258. Geological Society, London, Special Publications, London, p 200. ISBN-10: 1862391971, ISBN-13: 978-1862391970

    Google Scholar 

  • Fredsøe J (1978) Meandering and braiding of rivers. J Fluid Mech 84:609424

    Google Scholar 

  • Grasby SF, McCune GE, Beauchamp B, Galloway JM (2017) Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. Geol Soc Am Bull B31600-1:17. https://doi.org/10.1130/B31600.1

    Google Scholar 

  • Greiner B, Neugebauer J (2013) The rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines. Int J Earth Sci 102:1357–1376

    Google Scholar 

  • Greinert J, Derkachev A (2004) Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation. Mar Geol 204:129–144

    Google Scholar 

  • Hansen KW, Wallman K (2003) Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: a model perspective. Am J Sci 303:94–148

    Google Scholar 

  • Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 113:44–58

    Google Scholar 

  • Harrison CGA, Miskell KJ, Brass GW, Saltzman ES, Sloan IIJA (1983) Continental hypsography. Tectonics 2:357–377

    Google Scholar 

  • Hasegawa H, Tada R, Jiang X, Suganuma Y, Imsamut S, Charusiri P, Ichinnorov N, Khand Y (2012) Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Clim Past 8:1323–1337

    Google Scholar 

  • Hay WW (1981) Sedimentological and geochemical trends resulting from the breakup of Pangaea. Oceanol Acta 4/Suppl:135–147

    Google Scholar 

  • Hay WW (1994) Pleistocene-Holocene fluxes are not the earth’s norm. In: Hay WW, Usselmann T (eds) Material fluxes on the surface of the earth. Studies in geophysics. National Academy Press, Washington D.C., pp 15–27

    Google Scholar 

  • Hay WW (1998) Detrital sediment fluxes from continents to oceans. Chem Geol 145:287–323

    Google Scholar 

  • Hay WW (2008) Evolving ideas about the Cretaceous climate and ocean. Cretac Res 29:725–753

    Google Scholar 

  • Hay WW (2009) Cretaceous oceans and ocean modelling. In: Hu X, Wang C, Scott RW, Wagreich M, Jansa L (eds) Cretaceous oceanic red beds: stratigraphy, composition, origins and paleoceanographic and paleoclimatic significance, vol 91. SEPM (Society for Sedimentary Geology) Special Publication, Tulsa, pp 243–271 (ISBN 978-1-56576-135-3)

    Google Scholar 

  • Hay WW (2016) Experimenting on a small planet. A history of scientific discoveries, a future of climate change and global warming. Springer, Berlin, p 819

    Google Scholar 

  • Hay WW (2017) Toward understanding Cretaceous climate—an updated review. Sci China Earth Sci 60:5–19

    Google Scholar 

  • Hay WW, Floegel S (2012) New thoughts about the Cretaceous climate and oceans. Earth Sci Rev 115:262–272

    Google Scholar 

  • Hay WW, Leslie MA (1990) Could possible changes in global groundwater reservoir cause eustatic sea-level fluctuations? In: Revelle R (ed) (Panel Chairman), Sea—level change. National Academy Press, Washington D.C., pp 161–170

    Google Scholar 

  • Hay WW, Southam JR (1977) Modulation of marine sedimentation by the continental shelves. In: Anderson NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Marine science series 6. Plenum Press, New York, pp 569–604

  • Hay WW, Usselmann T (eds) (1994) Material fluxes on the surface of the earth. Studies in geophysics. National Academy Press, Washington D.C., p 185

    Google Scholar 

  • Hay WW, Barron EJ, Behensky JF Jr, Sloan JLII (1982) Triassic–Liassic paleoclimatology and sedimentation in proto-Atlantic rifts. Palaeogeogr Palaeoclimatol Palaeoecol 40:13–30

    Google Scholar 

  • Hay WW, Shaw CA, Wold CN (1989) Mass-balanced paleogeographic maps: background and input requirements. In: Cross T (ed) Quantitative dynamic stratigraphy. Plenum Press, New York, pp 261–275

    Google Scholar 

  • Hay WW, Eicher DL, Diner R (1993) Physical oceanography and water masses of the Cretaceous Western Interior Seaway. In: Caldwell WEG, Kauffman EG (eds) Evolution of the Western Interior Basin, vol 39. Geological Association of Canada, Special Paper, Canada, pp 297–318

    Google Scholar 

  • Herman AB (1994) A review of late Cretaceous Floras and climates of Arctic Russia. In: Boulter MC, Fischer HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin, pp 127–149

    Google Scholar 

  • Herman AB (1999a) Cretaceous flora of the Anadyr–Koryak subregion (North-Eastern Russia) systematic composition, age, stratigraphic and florogenic significance [Герман А.Б., (1999) Меловая флора Анадырско-Корякского субрегиона (Северо-Восток России): систематический состав возраст, стратиграфическое и флорогенетическое значение]. Trans Russ Acad Sci Geol Inst 529:122 (in Russian)

    Google Scholar 

  • Herman AB (1999b) Composition and age of the Grebenka Flora from the Anadyr River area (the Middle Cretaceous, North-eastern Russia). Stratigr Geol Correlat 7:265–278 (in Russian: Герман А.Б, (1999) Состав и возраст флоры Гребенки из района реки Анадырь (средний мел, северо-восток России. Стратиграфия. Геологическая корреляция 7: 265–278 C)

    Google Scholar 

  • Herman AB, Spicer RA (1996) Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380:330–333

    Google Scholar 

  • Herman AB, Spicer RA (1997) New quantitative palaeoclimate data for the Late Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeogr Palaeoclimatol Palaeoecol 128:227–251

    Google Scholar 

  • Herman AB, Spicer RA (2010) Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, Northern Yakutiya). Palaeogeogr Palaeoclimatol Palaeoecol 295:409–422

    Google Scholar 

  • Hill RD, Rinker RG, Wilson HD (1980) Atmospheric nitrogen fixation by lightning. J Atmos Sci 37:179–192

    Google Scholar 

  • Houghton JT, Jenkyns GJ, Ephraums JJ (1990) Climate change—the IPCC assessment. Cambridge University Press, Cambridge, 365 pp

    Google Scholar 

  • Huang Y, Shahabadi MB (2014) Why logarithmic? A note on the dependence of radiative forcing on gas concentration. J Geophys Res Atmos 119:13,683–13,689. https://doi.org/10.1002/2014JD022466

    Google Scholar 

  • Iglesias A, Zamuner AB, Poiré G, Larriestra F (2007) Diversity, taphonomy and palaeoecology of an angiosperm flora from the Cretaceous (Cenomanian–Coniacian) in southern Patagonia. Argent Palaeontol 50:445–466

    Google Scholar 

  • Jackson JR (1834) Hints on the subject of geographical arrangement and nomenclature. J R Geogr Soc Lond 4:72–88

    Google Scholar 

  • Jacobs DK, Sahagian DL (1993) Climate induced fluctuations in sea level during non-glacial times. Nature 361:710–712

    Google Scholar 

  • Jacobs DK, Sahagian DL (1995) Milankovitch fluctuations in sea level and recent trends in sea-level change: ice may not always be the answer. In: Haq BU (ed) Sequence stratigraphy and depositional response to eustatic, tectonic and climatic forcing. Kluwer Academic Publishers, Dordrecht, pp 329–366

    Google Scholar 

  • Jensen RG (2000) Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc Natl Acad Sci 97:12937–12938

    Google Scholar 

  • Kaplan JO (2001) Geophysical applications of vegetation modeling. Ph.D. Thesis, Lund University, Lund, Sweden, p 129

  • Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and Arctic ecosystems: 2. modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(D19):8171. https://doi.org/10.1029/2002JD002559

    Google Scholar 

  • Kazmin VG, Napatov LM (eds) (1998) Палеогеографическая Атлас Северного Евразия—Paleogeographic Atlas of Northern Eurasia: Institute of Tectonics of the Lithospheric Plates. Russian Academy of Natural Sciences, Moscow (20 maps + legend)

    Google Scholar 

  • Kemper E (1987) Das Klima der Kreide-Zeit. Geol Jahrbuch Reihe A 96:185 pp

    Google Scholar 

  • Kemper E, Schmitz HH (1981) Glendonite ~ Indikatoren des polarmarinen Ablagerungsmilieus. Geol Rundsch 70:759–778

    Google Scholar 

  • Kidder DL, Worsley TR (2010) Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 295:162–191

    Google Scholar 

  • Kidder DL, Worsley TR (2012) A human-induced hothouse climate? GSA Today 22/2:11. https://doi.org/10.1130/G131A.1

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Raschet PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3*. J Clim 11:1131–1149

    Google Scholar 

  • Kinsman DJJ (1975) Rift valley basins and sedimentary history of trailing continental margins. In Fischer AG, Judson S (eds) Petroleum and global tectonics. Princeton University Press, Princeton, pp 83–126

    Google Scholar 

  • Koch BE (1964) Review of fossil floras and nonmarine deposits of West Greenland. Geol Soc Am Bull 75:535–548

    Google Scholar 

  • Krause DW, Rogers RR, Forster CA, Hartman JH, Buckley GA, Sampson SD (1999) The Late Cretaceous Vertebrate Fauna of Madagascar: implications for Gondwanan Paleobiogeography. GSA Today 9(8):1–7

    Google Scholar 

  • Krause DW, O’Connor PM, Rogers KC, Sampson SD, Buckley GA, Rogers RR (2006) Late Cretaceous terrestrial vertebrates from Madagascar: implications for Latin American biogeography. Ann Missouri Bot Garden 93:178–208

    Google Scholar 

  • Kump LR, Pollard D (2008) Amplification of Cretaceous warmth by biological cloud feedbacks. Science 320:195

    Google Scholar 

  • Latrubesse EM (2008) Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101:130–145

    Google Scholar 

  • Leeder M (2007) Cybertectonic Earth and Gaia’s weak hand: sedimentary geology, sediment cycling and the Earth system. J Geol Soc 164:277–296

    Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127

    Google Scholar 

  • Leopold L (1953) Downstream change in velocity of rivers. Am J Sci 251:606–624

    Google Scholar 

  • Leopold LB, Wolman MG (1957) River channel patterns—braided, meandering, and straight. US Geol Surv Profess Pap 282B:39–85

    Google Scholar 

  • Leopold L, Wolman MG (1960) River meanders. Geol Soc Am Bull 71:769–794

    Google Scholar 

  • Li W, Li L, Fu R, Deng Y, Wang H (2011) Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the Southeastern United States. J Clim 24:1499–1506

    Google Scholar 

  • Li W, Li L, Ting M, Liu Y (2012) Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat Geosci 5:830–834

    Google Scholar 

  • Liu L, Spasojević S, Gurnis M (2008) Reconstructing Farallon Plate subduction beneath North America back to the Late Cretaceous. Science 322:934–938

    Google Scholar 

  • Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–202

    Google Scholar 

  • Liu S, Nummedal D, Liu L (2011) Migration of dynamic subsidence across the Late Cretaceous United States Western Interior Basin in response to Farallon plate subduction. Geology 39:555–558

    Google Scholar 

  • Makaske B (2001) Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth Sci Rev 53:149–196

    Google Scholar 

  • Manfroi J, Dutra TL, Gnædinger S, Uhl D, Jasper A (2015) The first report of a Campanian palaeo-wildfire in the West Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 418:12–18

    Google Scholar 

  • Markwick PJ, Valdes PJ (2004) Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (Late Cretaceous) example. Palaeogeogr Palaeoclimatol Palaeoecol 213:37–63

    Google Scholar 

  • Markwick PJ, Rowley DB, Ziegler AM, Hulver P, Valdes PJ, Sellwood BJ (2000) Late Cretaceous and Cenozoic global palaeogeographies: mapping the transition from a “hot-house” to an “ice-house” world. GFF 122:103

    Google Scholar 

  • Melton JR, Wania R, Hodson EL, Poulter B, Ringval B, Spahni R, Bohn T, Avis CA, beerling DJ, Chan G, Eliseev AV, Denisov SN, Hopcroft DO, Lettemmaier DP, Riley WJ, Singarayer JS, Subin ZM, Tian H, Zürcher, Brovkin V, van Bodegom PM, Kleinen T, Yu ZC, Kaplan JO (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10:753–788. https://doi.org/10.5194/bg-10-753-2013

    Google Scholar 

  • Miller KG (2009) Broken greenhouse windows. Nat Geosci 2:465–466

    Google Scholar 

  • Miller KG, Sugarman PJ, Browning JV, Kominz MA, Hernández JC, Olsson RK, Wright JD, Feigenson MD, Van Sickel W (2003) Late Cretaceous chronology of large, rapid sea-level changes: glacioeustasy during the greenhouse world. Geology 31:585–588

    Google Scholar 

  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The phanerozoic record of global sea-level change. Science 310:1293–1298

    Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C (2008) Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:1357–1362

    Google Scholar 

  • Mutterlose J, Bornemann A, Herrle J (2008) The Aptian–Albian cold snap: evidence for “mid” Cretaceous icehouse interludes. Neues Jahrbuch Geol Paläontol Abhandlungen 252:217–225

    Google Scholar 

  • Neugebauer J, Greiner B (2014) Reply to: Frisch and Dawes (DOI 10.1007/s00531-013-0980–7) discussion on the rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines (DOI 10.1007/s00531-012-0860-6). Int J Earth Sci 103:971–976

    Google Scholar 

  • Niezgodzki I, Knorr G, Lohmann G, Tyszka J, Markwick PJ (2017) Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: a model-data comparison. Paleoceanography 32:19. https://doi.org/10.1002/2016PA003055

    Google Scholar 

  • Nordenskiöld AE (1870) Redogörelse för en expedition till Grönland ar 1870. Kongliga Svenska Aakademie Ofversikt 10:923–1082

    Google Scholar 

  • Nordenskiöld A (1872) I—Account of an expedition to Greenland in the year 1870. Geol Mag 9:289–306. https://doi.org/10.1017/S001675680046513

    Google Scholar 

  • Norris RD, Bice KL, Magno EA, Wilson PA (2002) Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30:299–302

    Google Scholar 

  • Otto-Bliesner BL, Upchurch GR Jr (1997) Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. Nature 385:804–807

    Google Scholar 

  • Parrish JT, Spicer RA (1988) Late Cretaceous terrestrial vegetation: a near-polar temperature curve. Geology 16:22–25

    Google Scholar 

  • Pauly H (1963) “Ikaite” a new mineral from Greenland. Arctic 16:263–264

    Google Scholar 

  • Poole I (2000) Fossil angiosperm wood; its role in reconstruction of biodiversity and palaeoenvironment. Int J Linnean Soc 134:361–381

    Google Scholar 

  • Poole I, Cantrill DJ (2006) Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. Geol Soc Lond Spec Publ 258:63–81

    Google Scholar 

  • Poole I, Francis JE (2000) The first record of fossil wood of Winteraceae from the Upper Cretaceous of Antarctica. Ann Bot 85:307–315

    Google Scholar 

  • Poole I, Richter HG, Francis JE (2000) Evidence for Gondwanan origins for Sassafras (Lauraceae)? Late Cretaceous fossil wood of Antarctica. IAWA J 21:463–475

    Google Scholar 

  • Price GD, Nunn EV (2010) Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: transient glacial temperatures during the Cretaceous greenhouse. Geology 38:251–254

    Google Scholar 

  • Ramanathan V, Vogelmann AM (1997) Greenhouse effect, atmospheric solar absorption and the earth’s radiation budget: from the Arrhenius–Langley Era to the 1990s. Ambio 26:38–46

    Google Scholar 

  • Retallack GJ (2001) A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287–290

    Google Scholar 

  • Rodellas VI, Garcia-Orellanaa J, Masquéa P, Feldmane M, Weinsteine Y (2015) Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc Natl Acad Sci 112:3926–3930

    Google Scholar 

  • Rogers JJW, Santosh M (2013) Supercontinents in Earth history. Gondwana Res 6:357–368

    Google Scholar 

  • Rogov MA, Zakharov VA (2010) Jurassic and lower Cretaceous glendonite occurrences and their implication for Arctic paleoclimate reconstructions and stratigraphy. Earth Sci Front 17:345–347

    Google Scholar 

  • Ronov AB (1982) The Earth’s sedimentary shell (quantitative patterns of its structure, composition, and evolution). Int Geol Rev 24:1313–1363, 1365–1388

    Google Scholar 

  • Ronov AB (1993) Стратисфера—Или Осадочная Оболочка Земли (количественное исследование) [Stratisphere—or Sedimentary Shell of the Earth (quantitative research)]. Nauka, Moscow, p 144 (ISBN 5-02-003117-8)

    Google Scholar 

  • Ronov AB (1994) Phanerozoic transgressions and regressions on the continents; a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. Am J Sci 294:777–801

    Google Scholar 

  • Ronov AB, Khain VE, Seslavinsky KB (1984) Atlas of lithological–paleogeographical maps of the world: late Precambrian and Paleozoic of continents. Leningrad, Leningradskoe kartograficheskoe fabrike. VSEGEI 1984:70

    Google Scholar 

  • Ronov AB, Khain VE, Balukhovsky AN (1989) In: Barsukhov VL, Laviorov NP (eds) Atlas of Lithological–paleogeographical maps of the world: mesozoic and cenozoic of continents and oceans. Editorial Publishing Group, Moscow, p 79

    Google Scholar 

  • Rosgen DL (1994) A classification of natural rivers. Catena 22:169–199

    Google Scholar 

  • Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci Rev 54:349–392

    Google Scholar 

  • Royer DL, Berner RA, Park J (2007) Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 466:530–532

    Google Scholar 

  • Royer DL, Pagani M, Beerling DJ (2012) Geobiological constraints on earth system sensitivity to CO2 during the Cretaceous and Cenozoic. Geobiology 10:298–310

    Google Scholar 

  • Sames B, Wagreich M, Wendler JE, Haq BU, Conrad CP, Melinte-Dobrinescu MC, Hu X, Wendler L, Wolfgring E, Yilmaz I, Zorina SO (2016) Review: short-term sea-level changes in a greenhouse world—a view from the Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 441:393–411.j

    Google Scholar 

  • Schaller M, von Blanckenburg F, Hovius N, Kubik PW (2001) Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth Planet Sci Lett 188:441–458

    Google Scholar 

  • Schneider SH, Thompson SL, Barron EJ (1985) Mid-Cretaceous continental surface temperatures: are high CO2 concentrations needed to simulate above-freezing winter conditions?. In: Sundquist ET, Broecker WS (eds). The carbon cycle and atmospheric CO2: natural variations archean to present, pp 554–559

  • Schultz BP (2009) Pseudomorph after ikaite—called Glendonite is it a geological thermometer in cold sediments or geological oddity as it occurs close to PETM in the Fur formation. IOP Conf Ser Earth Environ Sci 6:P07.47. https://doi.org/10.1088/1755-1307/6/7/072059

    Google Scholar 

  • Schumm SA (1985) Patterns of alluvial rivers. Annu Rev Earth Planet Sci 13:5–27

    Google Scholar 

  • Selleck BW, Carr PF, Jones BG (2007) A review and synthesis of glendonites (pseudomorphs after ikaite) with new data: assessing applicability as recorders of ancient coldwater conditions. J Sedim Res 77:980–991

    Google Scholar 

  • Sellers PJ, Bounoua GJ, Collatz DA, Randall DA, Los Dazlich SO, Berry JA, Fung I, Tucker CJ, Field CB, Jensen. TG (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406

    Google Scholar 

  • Sellwood BW, Valdes PJ (2006) Mesozoic climates: general circulation models and the rock record. Sed Geol 190:269–287

    Google Scholar 

  • Sewall JO, van de Wal RSW, van der Zwan K, van Oosterhout C, Dijkstra HA, Scotese CR (2007) Climate model boundary conditions for four Cretaceous time slices. Clim Past 3:647–657

    Google Scholar 

  • Shaw CA, Hay WW (1989) Mass-balanced paleogeographic maps: modeling program and results. In: Cross T (ed) Quantitative dynamic stratigraphy. Plenum Press, New York, pp 277–291

    Google Scholar 

  • Sloan LC, Barron EJ (1990) Equable climates during earth history. Geology 18:489–492

    Google Scholar 

  • Sloan LC, Pollard D (1998) Polar stratospheric clouds: a high latitude warming mechanism in an ancient greenhouse world. Geophys Res Lett 25:3517–3520

    Google Scholar 

  • Smith A, Briden J (1977) Mesozoic cenozoic paleocontinental maps. Cambridge University Press, Cambridge, p 64

    Google Scholar 

  • Song Y, Ren J, Stepashko AA, Li J (2014) Post-rift geodynamics of the Songliao Basin, NE China: origin and significance of T11 (Coniacian) unconformity. Tectonophysics 634:1–18

    Google Scholar 

  • Song Y, Stepashko AA, Ren J (2015) The Cretaceous climax of compression in Eastern Asia: u age 87–89 Ma (late Turonian/Coniacian), Pacific cause, continental consequences. Cretac Res 55:262–284

    Google Scholar 

  • Southam JR, Hay WW (1981) Global sedimentary mass balance and sea level changes. In: Emiliani C (ed) The sea, “The Oceanic Lithosphere”: 1617–1684, 10 tables, 20 figs. Wiley, New York

    Google Scholar 

  • Spicer RA, Herman AB (2010) The Late Cretaceous environment of the Arctic: a quantitative reassessment based on plant fossils. Paleogeogr Paleoclimatol Paleoecol 295:423–442

    Google Scholar 

  • Spicer RA, Parrish JT (1987) Plant megafossils, vertebrate remains, and paleoclimate of the Kogosukruk Tongue (Late Cretaceous), North Slope, Alaska. US Geol Surv Circ 993(1987):47–48

    Google Scholar 

  • Spicer RA, Ahlberg A, Herman AB, Kelley SP, Raikevich MI, Rees PM (2002) Palaeoenvironment and ecology of the middle Cretaceous Grebenka flora of northeastern Asia. Paleogeogr Paleoclimatol Paleoecol 184:65–105

    Google Scholar 

  • Spicer RA, Ahlberg A, Herman AB, Hofmann C-C, Raikevich M, Valdes PJ, Markwick PJ (2008) The Late Cretaceous continental interior of Siberia: a challenge for climate models. Earth Planet Sci Lett 267:228–235

    Google Scholar 

  • Stepashko AA (2009) Cretaceous seamounts: record of the extension history of the Pacific plate. In: Marturino L, Puopolo K (eds) New oceanography research developments: marine chemistry, ocean floor analyses and marine phytoplankton, pp 249–267

  • Stølum H-H (1998) Platform geometry and dynamics of meandering rivers. Geol Soc Am Bull 110:185–198

    Google Scholar 

  • Suess E (2014) Marine cold seeps and their manifestations: geological control, biogeo-chemical criteria and environmental conditions. Int J Earth Sci 103:1889–1916. https://doi.org/10.1007/s00531-014-1010-0

    Google Scholar 

  • Suess E, Balzer W, Hesse K-F, Müller PJ, Ungerer CA, Wefer G (1982) Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic shelf: precursors of glendonites. Science 216:1128–1131

    Google Scholar 

  • Tarduno JSA, Brinkman DB, Renne PR, Cottrell RD, Scher H, Castillo P (1998) Evidence for extreme climatic warmth from Late Cretaceous Arctic Vertebrates. Science 282:2241–2244

    Google Scholar 

  • Teichert BMA, Luppold FW (2013) Glendonites from an Early Jurassic methane seep—climate or methane indicators? Palaeogeogr Palaeoclimatol Palaeoecol 390:81–93

    Google Scholar 

  • Termier H, Termier G (1952) Histoire géologique de la Biosphére. Masson & Cie, Paris, 721 pp

    Google Scholar 

  • Termier H, Termier G (1960) Atlas de Paléogéographie. Masson & Cie, Paris, 99 pp

    Google Scholar 

  • Thompson SL, Pollard D (1995a) A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part I: Present climates simulation. J Clim 8:732–761

    Google Scholar 

  • Thompson SL, Pollard D (1995b) A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part 2: CO2 sensitivity. J Clim 8:1104–1121

    Google Scholar 

  • Thompson SL, Pollard D (1997) Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS version-2 global climate model. J Clim 10:871–900

    Google Scholar 

  • Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Springer, Dordrecht, pp 77–94

    Google Scholar 

  • Turner RE, Rabalais NN (2003) Linking landscape and water quality in the Mississippi River basin for 200 years. Bioscience 53:563–572

    Google Scholar 

  • Upchurch GR Jr, Otto-Bliesner BL, Scotese CR (1998) Vegetation–atmosphere interactions and their role in global warming during the latest Cretaceous. Philos Trans R Soc Lond Ser B 353:97–112

    Google Scholar 

  • Upchurch GR Jr, Otto-Bliesner BL, Scotese CR (1999) Terrestrial vegetation and its effects on climate during the latest Cretaceous.. In: Barrera E, Johnson C (eds) Evolution of the cretaceous ocean/climate system, vol 332. Geological Society of America Special Paper, Boulder, pp 407–426

    Google Scholar 

  • Upchurch GR Jr, Kiehl J, Shields C, Scherer J, Scotese C (2015) Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: congruence of geologic data and climate models. Geology 43:683–686. https://doi.org/10.1130/G36802.1

    Google Scholar 

  • Veizer J, Godderis Y, François LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408:698–701

    Google Scholar 

  • Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402. https://doi.org/10.1002/2014GL060641

    Google Scholar 

  • Von Blanckenburg F (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237:462–479

    Google Scholar 

  • Wagreich M, Lein R, Sames B (2014) Eustasy, its controlling factors, and the limno-eustatic hypothesis—concepts inspired by Eduard Suess. Aust J Earth Scis 107:115–131

    Google Scholar 

  • Wagreich M, Haq BU, Melinte-Dobrinescu MC, Sames B, Yilmaz I (2016) Advances and perspectives in understanding Cretaceous sea-level change. Palaeogeogr Palaeoclimatol Palaeoecol 441:391–392

    Google Scholar 

  • Wallmann K (2001) Controls on Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta 65:3005–3025

    Google Scholar 

  • Wan C-B, Wang D-H, Zhu Z-P, Quan C (2011) Trend of Santonian (Late Cretaceous) atmospheric CO2 and global mean land surface temperature: evidence from plant fossils. Sci China Earth Sci 54:1338–1345

    Google Scholar 

  • Wang Y, Huang C, Sun B, Quan C, Wu J, Lin Z (2014) Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth Sci Rev 129:136–147

    Google Scholar 

  • Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter DdeB, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe AP (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:1–10

    Google Scholar 

  • Wendler J, Wendler I (2016) What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate? Palaeogeogr Palaeoclimatol Palaeoecol 441:412–419

    Google Scholar 

  • Wendler J, Wendler I, Vogt C, Kuss J (2016) Link between cyclic eustatic sea-level change and continental weathering: evidence for aquifer-eustasy in the Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 441:430–437

    Google Scholar 

  • Wold CN, Hay WW (1993) Reconstructing the age and lithology of eroded sediment. Geoinformatics 4:137–144

    Google Scholar 

  • Wold CN, Shaw CA, Hay WW (1993) Mass-balanced reconstruction of overburden. In: Harff J, Merriam DF (eds) Computerized basin analysis: the prognosis of energy and mineral resources. Plenum Press, New York, pp 115–130

    Google Scholar 

  • Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages. US Geol Surv Bull 2040:73

    Google Scholar 

  • Wolfe JA (1995) Paleoclimatic estimates from Tertiary leaf assemblages. Annu Rev Earth Planet Sci 23:119–142

    Google Scholar 

  • Zharkov MA, Murdmaa IO, Filatova NI (1998) Paleogeography of the Coniacian–Maastrichtian Ages of the Late Cretaceous. Stratigr Geol Correl 6/3:209–221

    Google Scholar 

  • Ziegler AM, Scotese CR, Barrett SF (1982) Mesozoic and cenozoic paleogeographic maps. In: Brosche P, Sündermann J (eds) Tidal friction and earth’s rotation II. Springer, Berlin, pp 240–252

    Google Scholar 

  • Ziegler AM, Rowley DB, Lottes AL, Sahagian DL, Hulver ML, Gierlowski TC (1985) Paleogeographic interpretation: with an example from the Mid-Cretaceous. Ann Rev Earth Planet Sci 13:385–425

    Google Scholar 

Download references

Acknowledgements

We thank all of those who have helped in the development of the ideas presented herein. Donald S. Marszalek and Jim Stunkle read drafts and suggested improvements. Robert DeConto’s work on Cretaceous climates originally supported by Grants from the US National Science Foundation. Sascha Flögel’s work was supported by the German Science Foundation (SFB 754 sub-project A7). Ying Song’s work has been supported by the China University of Petroleum (East China) in Qingdao. Andrei Stepashko is supported by the Kosygin Institute of Tectonics and Geophysics, Far East Division, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Hay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hay, W.W., DeConto, R.M., de Boer, P. et al. Possible solutions to several enigmas of Cretaceous climate. Int J Earth Sci (Geol Rundsch) 108, 587–620 (2019). https://doi.org/10.1007/s00531-018-1670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-018-1670-2

Keywords

Navigation