Skip to main content
Log in

Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43°S)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Here we present the first systematic investigation of volatile geochemistry along the Southern Volcanic Zone (SVZ) of Chile. Holocene olivine-hosted melt inclusions in the most mafic tephras sampled from 16 volcanoes along the volcanic front of the SVZ between 33°S and 43°S were analysed for pre-eruptive sulphur, chlorine, and major element contents. These results are combined with trace element compositions of the host whole rocks. The highest fractionation-corrected gas contents occur in the least-degassed melt inclusions from small monogenetic cones of Los Hornitos, Cabeza de Vaca, and Apagado from both the transitional and the southern-central SVZ, reaching ~3,000 μg/g S and 1,400 μg/g Cl, while the lowest abundances of ~1,100 μg/g S and ~600 μg/g Cl were found in the central SVZ at Volcán Lonquimay, Volcán Llaima, and Volcán Villarrica. Chlorine co-varies with trace element indicators for the degree of melting and/or source enrichment, such that the lowest Cl contents are found in high-degree melts from the most depleted mantle sources. The size of the volcanic edifices correlates inversely with Cl abundances in the melt. This could reflect more extensive degassing during ascent through the complex magma plumbing systems beneath the stratovolcanoes or greater dilution during larger degrees of melting of more depleted sources, or a combination of these factors. Compared to other subduction zones, the SVZ melt inclusions exhibit Cl and S abundances in the same range as most of those from the Central American and those from the Marianas arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Baker DR, Moretti R (2011) Modeling the solubility of sulfur in magmas: a 50-year old geochemical challenge. Rev Mineral Geochem 73:167–213. doi:10.2138/rmg.2011.73.7

    Article  Google Scholar 

  • Baker DR, Freda C, Brooker RA, Scarlato P (2005) Volatile diffusion in silicate melts and its effets on melt inclusions. Ann Geophys 48:699–717

    Google Scholar 

  • Beermann O, Botcharnikov RE, Holtz F, Diedrich O, Nowak M (2011) Temperature dependence of sulfide and sulfate solubility in olivine-saturated basaltic magmas. Geochim Cosmochim Acta 75:7612–7631. doi:10.1016/j.gca.2011.09.024

    Article  Google Scholar 

  • Behrens H, Stelling J (2011) Diffusion and redox reactions of sulfur in silicate melts. Rev Mineral Geochem 73:79–111. doi:10.2138/rmg.2011.73.4

    Google Scholar 

  • Binder B, Keppler H (2011) The oxidation state of sulfur in magmatic fluids. Earth Planet Sci Lett 301:190–198. doi:10.1016/j.epsl.2010.10.042

    Article  Google Scholar 

  • Bouvet de Maisonneuve C, Dungan MA, Bachmann O, Burgisser A (2012) Insights into shallow magma storage and crystallization at Volcán Llaima (Andean Southern Volcanic Zone, Chile). J Volcanol Geotherm Res 211–212:76–91. doi:10.1016/j.jvolgeores.2011.09.010

    Article  Google Scholar 

  • Bouvet de Maisonneuve C, Dungan MA, Bachmann O, Burgisser A (2013) Petrological insights into shifts in eruptive styles at Volcán Llaima (Chile). J Petrol 54(2):393–420. doi:10.1093/petrology/egs073

    Article  Google Scholar 

  • Carroll MR (2005) Chlorine solubility in evolved alkaline magmas. Ann Geophys 48(4–5):619–631

    Google Scholar 

  • Contreras-Reyes E, Grevemeyer I, Flueh ER, Reichert C (2008) Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at 38°S. J Geophys Res 113:B07303. doi:10.1029/2007JB005569

    Google Scholar 

  • Costa F, Singer B (2002) Evolution of Holocene dacite and compositionally zoned magma, Volcán San Pedro, Southern Volcanic Zone, Chile. J Petrol 43(8):1571–1593

    Google Scholar 

  • Cottrell E, Kelley KA (2013) Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source. Science 340:1314–1317. doi:10.1126/science.1233299

    Article  Google Scholar 

  • Danyushevsky L, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Davidson JP, Dungan MA, Ferguson KM, Colucci MT (1987) Crust-magma interactions and the evolution of arc magmas: the San Pedro-Pellado volcanic complex, southern Chilean Andes. Geology 15:443–446

    Article  Google Scholar 

  • Dungan MA, Wulff A, Thomson R (2001) Eruptive stratigraphy of the Tatara-San Pedro Complex, 36°S, Southern Volcanic Zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J Petrol 42(3):555–626

    Article  Google Scholar 

  • Dzierma Y, Rabbel W, Thorwart M, Koulakov I, Wehrmann H, Hoernle K, Comte D (2012) Seismic velocity structure of the slab and continental plate in the region of the 1960 Valdivia (Chile) slip maximum—insights into fluid release and plate coupling. Earth Planet Sci Lett 331(332C):164–176. doi:10.1016/j.epsl.2012.02.006

    Article  Google Scholar 

  • Ferguson KM, Dungan MA, Davidson JP, Colucci MT (1992) The Tatara-San Pedro Volcano, 36°S, Chile: a chemically variable, dominnatly mafic magmatic system. J Petrol 33(1):1–43

    Google Scholar 

  • Freda C, Baker DR, Scarlato P (2005) Sulfur diffusion in basaltic melts. Geochim Cosmochim Acta 69(21):5061–5069

    Google Scholar 

  • Gaetani GA, O’Leary JA, Shimizu N, Bucholz CE, Newville M (2012) Rapid reequilibration of H2O and oxygen fugacity in olivie-hosted melt inclusions. Geology 40:915–918. doi:10.1130/G32992.1

    Article  Google Scholar 

  • Garbe-Schönberg CD (1993) Simulataneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newslett 17:81–97. doi:10.1111/j.1751-908X.1993.tb00122.x

    Article  Google Scholar 

  • Guthrie KM, Wulff AH (2002) Magma petrogenesis of stratigraphically collected flows from Volcán Cerro Azul, Southern Volcanic Zone, Chile. Abstract, GSA joint annual meeting, Lexington, Kentucky, USA

  • Hickey RL, Gerlach DC, Frey FA (1984) Geochemical variations in volcanic rocks from central-south Chile (33°–42°S). In: Harmon RS, Barreiro BA (eds) Andean magmatism: chemical and isotopic constraints. Shiva Publishing Ltd, Nantwich, UK, pp 72–95

    Chapter  Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34–41 S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J Geophys Res 91:5963–5983

    Article  Google Scholar 

  • Hickey-Vargas R, Sun M (2003) Decompression and flux melting in the Chilean Southern Volcanic Zone: implications for slab-wedge and wedge-crust mass transfer. State of the Arc conference, Timberline, Oregon, USA

  • Hickey-Vargas R, Moreno-Roa H, López-Escobar L, Frey FA (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanín volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization, and crustal assimilation. Contrib Mineral Petrol 103:361–386

    Article  Google Scholar 

  • Hickey-Vargas R, Abdollahi MJ, Parada MA, López-Escobar L, Frey FA (1995) Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: implications for crustal composition and magma-crust interaction. Contrib Mineral Petrol 119:331–344

    Article  Google Scholar 

  • Hickey-Vargas R, Sun M, López-Escobar L, Moreno-Roa H, Reagan MK, Morris JD, Ryan JG (2002) Multiple subduction components in the mantle wedge: evidence from eruptive centers in the Central Southern volcanic zone, Chile. Geology 30(3):199–202. doi:10.1130/0091-7613(2002)030

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Jacques G, Hoernle K, Gill J, Hauff F, Wehrmann H, Garbe-Schönberg D, van den Bogaard P, Bindeman I, Lara LE (2013) Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5- 38.0°S): constraints on mantle wedge and input compositions. Geochim Cosmochim Acta 123:218–243. doi:10.1016/j.gca.2013.05.016

    Article  Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418. doi:10.1130/G25527A.1

    Article  Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117(1-2):67–88. doi:10.1130/B25431.1

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 329–330:109–121. doi:10.1016/j.epsl.2012.02.010

  • Kent AJR (2008) Melt inclusions in basaltic and related volcanic rocks. Rev Mineral Geochem 73:273–331. doi:10.2138/rmg.2011.69.8

    Article  Google Scholar 

  • Klimm K, Kohn SC, Botcharnikov RE (2012) The dissolution mechanism of sulphur in hydrous silicate melts. II: solubility and speciation of sulphur in hydrous silicate melts as a function of fO2. Chem Geol 322–323:250–267. doi:10.1016/j.chemgeo.2012.04.028

    Article  Google Scholar 

  • López-Escobar L, Frey FA, Vergara M (1977) Andesites and high-alumina basalts from the Central-South Chile high andes: geochemical evidence bearing on their petrogenesis. Contrib Mineral Petrol 63:199–228

    Article  Google Scholar 

  • López-Escobar L, Parada MA, Moreno H, Frey FA, Hickey-Vargas R (1992) A contribution to the petrogenesis of Osorno and Calbuco volcanoes, Southern Andes (41°–41°30′S): comparative study. Rev Geol Chile 19:211–226

    Google Scholar 

  • López-Escobar L, Cembrano J, Moreno H (1995a) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37°–46°S). Rev Geol Chile 22(2):219–234

    Google Scholar 

  • López-Escobar L, Kempton PD, Moreno H, Parada MA, Hickey-Vargas R, Frey FA (1995b) Calbuco volcano and minor eruptive centers distributed along the Liquine-Ofqui fault zone, Chile (41°–42°S): contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes. Contrib Mineral Petrol 119:345–361

    Article  Google Scholar 

  • Mahlke, J (2009) Geochemical evolution of Llaima and Villarrica Volcanoes, Central Chile. Unpublished diploma thesis, University of Kiel, Germany

  • McMillan NJ, Harmon RS, Moorbath S, López-Escobar L, Strong DF (1989) Crustal sources involved in continental arc magmatism: a case study of Volcán Mocho-Choshuenco, southern Chile. Geology 17:1152–1156

    Article  Google Scholar 

  • Métrich N, Wallace P (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69:363–402. doi:10.2138/rmg.2008.69.10

    Google Scholar 

  • Muñoz J, Stern CR (1989) Alkaline magmatism within the segment 38°–39° S of the Plio-Quaternary volcanic belt of the southern South American margin. J Geophys Res 794(B4):4545–4560

    Article  Google Scholar 

  • Parat F, Holtz F, Streck MJ (2011) Sulfur-bearing accessory minerals. Rev Mineral Geochem 73:285–314. doi:10.2138/rmg.2011.73.10

    Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69. doi:10.1016/j.epsl.2006.12.005

    Article  Google Scholar 

  • Rea JC (2009) The petrology and geochemistry of Volcán Callaqui, Chile. Dissertation, Weselyan University, 184 p

  • Rea JC, Varekamp JC, Mandeville C, Goss AR, Colvin A (2009) Regional magmatic setting of Callaqui Volcano, (S-Andes, Chile). Abstract, Portland GSA annual meeting, 33-14

  • Reubi O, Bourdon B, Dungan MA, Koornneef JM, Sellés D, Langmuir CH, Aciego S (2011) Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcán Llaima, Chile. Earth Planet Sci Lett 303:37–47. doi:10.1016/j.epsl.2010.12.018

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  Google Scholar 

  • Rodríguez C, Sellés D, Dungan M, Langmuir C, Leeman W (2007) Adakitic dacites formed by intrcrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2°S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48/11:2033–2061. doi:10.1093/petrology/emg049

    Article  Google Scholar 

  • Ruprecht P, Bergantz GW, Cooper KM, Hildreth W (2012) Quizapu, Chile, and the effects of magma mixing on magma diversity. J Petrol 53(4):801–840. doi:10.1093/petrology/egs002

    Google Scholar 

  • Saal AE, Frey FA, Delpino D, Bermudez A (1993) Geochemical characteristics of alkalic basalts erupted behind the Andean volcanic front (35–37°S): constraints on sources and processes involved in continental arc magmatism. EOS Trans. AGU 74, (43), Fall Meet Suppl, Abstract F652

  • Sadofsky SJ, Portnyagin MV, Hoernle K, van den Bogaard P (2008) Subduction cycling of volatile and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib Mineral Petrol 155(4):433–456. doi:10.1007/s00410-007-0251-3

    Article  Google Scholar 

  • Sadofsky SJ, Hoernle K, Duggen S, Hauff F, Werner R, Garbe-Schönberg D (2009) Geochemical variations in the Cocos Plate subducting beneath Central America: implications for the composition of arc volcanism and the extent of the Galápagos Hotspot influence on the Cocos oceanic crust. Int J Earth Sci 98:901–913. doi:10.1007/s00531-007-0289-5

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05004. doi:10.1029/2003GC000597

    Article  Google Scholar 

  • Scaillet B, Clemente B, Evans BW, Pichavant M (1998) Redox control of sulfur degassing in silicic magmas. J Geophys Res 103:23937–23949

    Article  Google Scholar 

  • Schumann K (2010) Geochemical investigation of the three volcanoes Casablanca, Osorno and Cabeza de Vaca, Southern Volcanic Zone, Chile. Unpublished Diploma thesis, University of Halle-Wittenberg, Germany

  • Sellés D, Rodríguez C, Dungan MA, Naranjo JA, Gardeweg M (2004) Geochemistry of Nevado de Longaví volcano (36.2°S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Rev Geol Chile 31:293–315

    Article  Google Scholar 

  • Shaw AM, Hauri EH, Fischer TP, Hilton DR, Stern RJ (2007) Geochemical studies of the Izu-Bonin-Mariana subduction system: highlights, progress and future directions. Eos Trans. AGU, 85(50), Fall Meet Suppl, Abstract T44C‐01

  • Shaw AM, Hauri EH, Fischer TP, Hilton DR, Kelley KA (2008) Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-Earth water cycle. Earth Planet Sci Lett 275:138–145. doi:10.1016/j.epsl.2008.08.015

    Article  Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31(2):161–206

    Article  Google Scholar 

  • Stern CR, Futa K, Muehlenbachs K, Dobbs FM, Muñoz J, Godoy E, Charrier R (1984) Sr, Nd, Pb, and O isotope composition of late Cenozoic volcanics, northernmost SVZ (33°–34°S). In: Harmon RS, Barreiro BA (eds) Andean magmatism, chemical and isotopic constraint. Shiva Publ, Cheshire, pp 96–105

    Chapter  Google Scholar 

  • Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67(21):4179–4203. doi:10.1016/S0016-7037(00)00307-7

    Article  Google Scholar 

  • Tabazadeh A, Turco RP (1993) Stratospheric chlorine injection by volcanic eruptions: HCl scavenging and implication for ozone. Science 260:1082–1086

    Article  Google Scholar 

  • Tassara A, Götze HJ, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111(B09404). doi:10.1029/2005JB003976

  • Tormey DR, Hickey-Vargas R, Frey FA, López-Escobar L (1991) Recent lavas form the Andean volcanic front (33 to 42°S); interpretations of along-arc compositional variations. Geol Soc Am Spec Pap 265:57–77

    Article  Google Scholar 

  • Tormey DR, Frey FA, López-Escobar L (1995) Geochemistry of the active Azufre–Planchon–Peteroa volcanic complex, Chile (35°15′S): evidence for multiple sources and processes in a cordilleran arc magmatic system. J Petrol 36(2):265–298

    Article  Google Scholar 

  • Völker D, Kutterolf S, Wehrmann H (2011) Comparative mass balance of volcanic edifices at the Southern Volcanic Zone of the Andes between 33°S and 46°S. J Volcanol Geotherm Res 205:114–129. doi:10.1016/j.volgeores.2011.03.011

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusions and volcanic gas data. J Volcanol Geotherm Res 140:217–240. doi:10.1016/j.volgeores.2004.07.23

    Article  Google Scholar 

  • Wallace PJ, Edmonds M (2011) The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev Mineral Geochem 73:215–246. doi:10.2138/rmg.2011.73.8

    Article  Google Scholar 

  • Watt SFL, Pyle DM, Mather TA, Naranjo JA (2013) Arc magma compositions controlled by linked thermal and chemical gradients above the subducting slab. Geophys Res Lett 40(11):2550–2556. doi:10.1002/grl.50513

    Article  Google Scholar 

  • Webster JD, Kinzler RJ, Mathez EA (1999) Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochim Cosmochim Acta 63:729–738

    Google Scholar 

  • Wehrmann H, Hoernle K, Portnyagin M, Wiedenbeck M, Heydolph K (2011) Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras. Geochem Geophys Geosys 12(6):Q06003. doi:10.1029/2010GC003412

    Article  Google Scholar 

  • Wehrmann H, Hoernle K, Garbe-Schönberg D, Jacques G, Mahlke J, Schumann K (2014) Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas. Int J Earth Sci. doi:10.1007/s00531-013-0917-1

  • Witter JB, Kress VC, Delmelle P, Stix J (2004) Volatile degassing, petrology, and magma dynamics of the Villarrica Lava Lake, Southern Chile. J Volcanol Geotherm Res 134:303–337. doi:10.1016/j.volgeores.2004.03.002

    Article  Google Scholar 

  • Zajacz Z, Halter W (2009) Copper transport by high temperature, sulfur-rich magmatic vapor: evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth Planet Sci Lett 282:115–121. doi:10.1016/j.epsl.2009.03.006

    Article  Google Scholar 

Download references

Acknowledgments

We thank Paul van den Bogaard, Jorge Clavero, Katja Hockun, and Rayén Rivera-Vidal for their assistance in the field. Sampling campaigns were also supported by helicopter pilot Eduardo Boisset and by the Chilean arrieros Titin, Gerardo, Valdemar, Roberto, Nano, and their colleagues with horses and guidance. Credit is due to Philipp Rohde and Silvia Gütschow for their support with sample preparation. Mario Thöner and Ulrike Westernströer contributed valuable help with performing the electron microprobe and ICP-MS analyses. We wish to thank Patricia Sruoga and an anonymous reviewer for their helpful suggestions, and we are also grateful to an anonymous reviewer for comments on an earlier version of this manuscript. This paper is contribution No. 240 of Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” funded by the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Wehrmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

531_2014_1006_MOESM1_ESM.pdf

Online Resource 1. Results of electron microprobe measurements of the reference materials ALV-981, VGA-99, VG-2, and CFA-47 (PDF 113 kb)

531_2014_1006_MOESM2_ESM.xls

Online Resource 2. Results of ICP-MS measurements of reference materials; repeat digestions and repeat measurements of the same digests to prove reproducibilty of the digests and instrumental precision of the analysis, and blanks for demonstrating low analytical backgrounds (XLS 10486 kb)

531_2014_1006_MOESM3_ESM.zip

Online Resource 3. Least-degassed melt inclusion major and volatile element compositions and major element compositions of their host olivines, for the SVZ volcanoes. All values are determined by electron microprobe, melt inclusion data are normalised to 100 % water-free, original totals are retained. Also provided are melt inclusion compositions recalculated to equilibrium with the host olivine to account for post-entrapment crystallisation, and to equilibrium with mantle olivine (Fo91) as an estimate of parental melt compositions, with the help of Petrolog 2.1 software (Danuyshevsky 2002) (ZIP 247 kb)

531_2014_1006_MOESM4_ESM.zip

Online Resource 4. Compositions of matrix glasses, relatively degassed melt inclusions, and host olivines of the latter of the SVZ tephras (ZIP 380 kb)

531_2014_1006_MOESM5_ESM.zip

Online Resource 5. Whole-rock major (wt.%) and trace (μg/g) element compositions, determined by XRF and solution ICP-MS (ZIP 62 kb)

531_2014_1006_MOESM6_ESM.pdf

Online Resource 6. Trace element ratios Nb/Y and La/Sm versus (a) Mg-number and (b) SiO2 to facilitate evaluation of the influence of magma-genetic processes versus effects of differentiation. Symbols as in Figure 3 a, b (PDF 25 kb)

531_2014_1006_MOESM7_ESM.pdf

Online Resource 7. S (μg/g) versus (a) SiO2 (wt.%) and (b) FeO (wt.%) for melt inclusions from two tephra layers at Planchón-Peteroa (PDF 12 kb)

531_2014_1006_MOESM8_ESM.pdf

Online Resource 8. Fractionation-corrected concentrations of (a) S and (b) Cl along the arc, including only mafic melt inclusions with SiO2 < 53 wt.% (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehrmann, H., Hoernle, K., Jacques, G. et al. Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43°S). Int J Earth Sci (Geol Rundsch) 103, 1945–1962 (2014). https://doi.org/10.1007/s00531-014-1006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1006-9

Keywords

Navigation