Skip to main content
Log in

Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Subduction zones of continental, transitional, and oceanic settings, relative to the nature of the overriding plate, are compared in terms of trace element compositions of mafic to intermediate arc rocks, in order to evaluate the relationship between subduction parameters and the presence of subduction fluids. The continental Chilean Southern Volcanic Zone (SVZ) and the transitional to oceanic Central American Volcanic Arc (CAVA) show increasing degrees of melting with increasing involvement of slab fluids, as is typical for hydrous flux melting beneath arc volcanoes. At the SVZ, the central segment with the thinnest continental crust/lithosphere erupted the highest-degree melts from the most depleted sources, similar to the oceanic-like Nicaraguan segment of the CAVA. The northern part of the SVZ, located on the thickest continental crust/lithosphere, exhibits features more similar to Costa Rica situated on the Caribbean Large Igneous Province, with lower degrees of melting from more enriched source materials. The composition of the slab fluids is characteristic for each arc system, with a particularly pronounced enrichment in Pb at the SVZ and in Ba at the CAVA. A direct compositional relationship between the arc rocks and the corresponding marine sediments that are subducted at the trenches clearly shows that the compositional signature of the lavas erupted in the different arcs carries an inherited signal from the subducted sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abers GA, van Keken PE, Kneller EA, Ferris A, Stachnik JC (2006) The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet Sci Lett 241(3–4):387–397. doi:10.1016/j.epsl.2005.11.055

    Article  Google Scholar 

  • Aubouin J, von Huene R (1982) Initial reports of the Deep Sea Drilling Project, vol 67. Washington DC, U.S. Government Printing Office, 799 p

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16(3):489–503

    Article  Google Scholar 

  • Benjamin ER, Plank T, Wade JA, Kelley KA, Hauri EH, Alvarado GE (2007) High water contents in basaltic magmas from Irazú Volcano, Costa Rica. J Volcanol Geotherm Res 168:68–92. doi:10.1016/j.jvolgeores.2007.08.008

    Article  Google Scholar 

  • Carr MJ (1984) Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. J Volcanol Geotherm Res 20:231–252

    Article  Google Scholar 

  • Carr MJ, Feigenson MD, Bennett EA (1990) Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American Volcanic Arc. Contrib Mineral Petrol 105:369–380. doi:10.1007/BF00286825

    Article  Google Scholar 

  • Carr MJ, Saginor I, Alvarado GE, Bolge LL, Lindsay FN, Milidakis K, Turrin BD, Feigenson MD, Swisher CC III (2007) Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochem Geophys Geosyst 8:Q06001. doi:10.1029/2006GC001396

    Article  Google Scholar 

  • Cooper LB, Ruscitto DM, Plank T, Wallace PJ, Syracuse EM, Manning CE (2012) Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem Geophys Geosyst 13:Q03024. doi:10.1029/2011GC003902

    Article  Google Scholar 

  • Coulbourn WT, Hesse R, Azema J, Shiki T (1982) A summary of the sedimentology of DSDP leg 67 sites: the Middle America trench and slope of Guatemala—an active margin transect. In: Aubouin J et al (eds) Initial reports DSDP 67:759–774

  • Davidson JP, Dungan MA, Ferguson KM, Colucci MT (1987) Crust-magma interactions and the evolution of arc magmas: the San Pedro-Pellado volcanic complex, southern Chilean Andes. Geology 15:443–446

    Article  Google Scholar 

  • DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central American Volcanic Arc. Geophys Res Let 28:4043–4046

    Article  Google Scholar 

  • Dungan MA, Wulff A, Thomson R (2001) Eruptive stratigraphy of the Tatara-San Pedro complex, 36°S, Southern Volcanic Zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J Petrol 42(3):555–626

    Article  Google Scholar 

  • Dzierma Y, Rabbel W, Thorwart M, Koulakov I, Wehrmann H, Hoernle K, Comte D (2012) Seismic velocity structure of the slab and continental plate in the region of the 1960 Valdivia (Chile) slip maximum—insights into fluid release and plate coupling. Earth Planet Sci Lett 331/332C:164–176. doi:10.1016/j.epsl.2012.02.006

    Article  Google Scholar 

  • Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6:Q07007. doi:10.1029/2004GC000804

    Article  Google Scholar 

  • Ferguson KM, Dungan MA, Davidson JP, Colucci MT (1992) The Tatara-San Pedro Volcano, 36 °S Chile: a chemically variable, dominantly mafic magmatic system. J Petrol 33(1):1–43

    Google Scholar 

  • Garbe-Schönberg CD (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newsl 17:81–97. doi:10.1111/j.1751-908X.1993.tb00122.x

    Article  Google Scholar 

  • Gazel E, Carr MJ, Hoernle K, Feigenson MD, Szymanski D, Hauff F, van den Bogaard P (2009) Galapagos-OIB signature in southern Central America: mantle refertilization by arc—hot spot interaction. Geochem Geophys Geosyst 10:Q02S11. doi:10.1029/2008GC002246

    Article  Google Scholar 

  • Geldmacher J, Hoernle K, van den Bogaard P, Hauff F, Klügel A (2008) Age and geochemistry of the Central American forearc basement (DSDP Leg 67 and 84): insights into Mesozoic arc volcanism and seamount accretion on the fringe of the Caribbean LIP. J Petrol 49(10):1781–1815. doi:10.1093/petrology/egn046

    Article  Google Scholar 

  • Geldmacher J, Höfig T, Hauff F, Hoernle K, Garbe-Schönberg D, Wilson DS (2013) Influence of the Galápagos hotspot on the East Pacific Rise during Miocene superfast spreading. Geology 41:183–186. doi:10.1130/G33533.1

    Article  Google Scholar 

  • Goss A, Kay SM (2006) Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: evidence for forearc subduction erosion? Geochem Geophys Geosyst 7:Q05016. doi:10.1029/2005GC001163

    Article  Google Scholar 

  • Grevemeyer I, Ranero CR, Flueh ER, Kläschen D, Bialas J (2007) Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth Planet Sci Lett 258:528–542. doi:10.1016/j.epsl.2007.04.013

    Article  Google Scholar 

  • Grove TL, Baker MB (1984) Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res 89/B5:3253–3274

    Article  Google Scholar 

  • Hacker BR (2008) H2O subduction beyond arcs. Geochem Geophys Geosyst 9(3):Q03001. doi:10.1029/2007GC001707

    Article  Google Scholar 

  • Halama R, John T, Herms P, Hauff F, Schenk V (2011) A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab. Chem Geol 281:151–166. doi:10.1016/j.chemgeo.2010.12.001

    Article  Google Scholar 

  • Heydolph K, Hoernle K, Hauff F, van den Bogaard P, Portnyagin M, Bindeman I, Garbe-Schönberg D (2012) Along and across arc geochemical variations in NW Central America: evidence for involvement of lithospheric pyroxenite. Geochim Cosmochim Acta 84:459–491. doi:10.1016/j.gca.2012.01.035

    Article  Google Scholar 

  • Hickey RL, Gerlach DC, Frey FA (1984) Geochemical variations in volcanic rocks from central-south Chile (33°–42°S). In: Harmon RS, Barreiro BA (eds) Andean Magmatism: chemical and isotopic constraints. Shiva Publishing, Cheshire, England, pp 72–95

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hoernle K, Werner R, Phipps-Morgan J, Garbe-Schönberg D, Bryce J, Mrazek J (2000) Existence of complex spatial zoning in the Galapagos Plume. Geology 28:435–438. doi:10.1130/0091-7613(2000)28<435:EOCSZI>2.0.CO;2

    Article  Google Scholar 

  • Hoernle K, Tilton G, le Bas MJ, Duggen S, Garbe-Schönberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol 142:520–542. doi:10.1007/s004100100308

    Article  Google Scholar 

  • Hoernle K, Abt DL, Fischer KM, Nichols H, Hauff F, Abers G, van den Bogaard P, Alvarado G, Protti JM, Strauch W (2008) Geochemical and geophysical evidence for arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature 451:1094–1097. doi:10.1038/nature06550

    Article  Google Scholar 

  • Hoernle K, Hauff F, Hanan F, Werner R, Christie D, Garbe-Schönberg D (2010) Seamount South of the Galapagos Spreading Center provide new constraints on plume-ridge interaction and evidence for a depleted plume component. Eos Trans AGU 91(52), Fall Meet Suppl, Abstract V52A-08

  • Hofman AV, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45

    Article  Google Scholar 

  • Ivandic M, Grevemeyer I, Berhorst A, Flueh ER, McIntosh K (2007) Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua. J Geophys Res 113:B05410. doi:10.1029/2007JB005291

    Google Scholar 

  • Jacques G, Hoernle K, Gill J, Hauff F, Wehrmann H, Garbe-Schönberg D, van den Bogaard P, Bindeman I, Lara LE (2013) Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): constraints on mantle wedge and input compositions. Geochim Cosmochim Acta. doi:10.1016/j.gca.2013.05.016

  • Jicha BR, Smith KE, Singer BS, Beard BL, Johnson CM, Rogers NW (2010) Crustal assimilation no match for slab fluids beneath Volcán de Santa María, Guatemala. Geology 38:859–862. doi:10.1130/G31062.1

    Article  Google Scholar 

  • John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76. doi:10.1016/j.epsl.2011.05.038

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J South Am Earth Sci 15:39–57

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727. doi:10.1038/nature03971

    Article  Google Scholar 

  • LeMaitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley RA, Zanettin B (1989) A classification of igneous rocks and glossary of terms, recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks, vol 193. Blackwell Scientific, Oxford

    Google Scholar 

  • López-Escobar L, Parada MA, Moreno H, Frey FA, Hickey-Vargas R (1992) A contribution to the petrogenesis of Osorno and Calbuco volcanoes, Southern Andes (41°00′–41°30′S): comparative study. Rev Geol Chile 19:211–226

    Google Scholar 

  • Lucassen F, Wiedecke M, Franz G (2010) Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of Quaternary trench sediments in Chile (36°–40°S). Int J Earth Sci 99:687–701. doi:10.1007/s00531-008-0410-4

    Article  Google Scholar 

  • MacKenzie L, Abers GA, Fisher KM, Syracuse EM, Protti JM, Gonzales V, Strauch W (2008) Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst 9/8:Q08S09. doi:10.1029/2008GC001991

    Google Scholar 

  • Melnick D, Echtler HP (2006) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34(9):709–712. doi:10.1130/G22440.1

    Article  Google Scholar 

  • Patino LC, Carr MJ, Feigenson MD (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138(3):265–283

    Article  Google Scholar 

  • Peacock SM, van Keken PE, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica—Nicaragua subduction zone. Phys Earth Planet Int 149:187–200. doi:10.1016/j.pepi.2004.08.030

    Article  Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C, Norry M (eds) Continental basalts and mantle xenoliths. Shiva Geology Series, Nantwich, pp 230–249

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48. doi:10.1016/j.lithos.2007.06.016

    Article  Google Scholar 

  • Phipps-Morgan J, Ranero C, Vanucchi P (2008) Intra-arc extension in Central America: links between plate motions, tectonics, volcanism, and geochemistry. Earth Planet Sci Lett 272:365–371. doi:10.1016/j.epsl.2008.05.004

    Article  Google Scholar 

  • Plank T (2005) Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46(5):921–944. doi:10.1093/petrology/egi005

    Article  Google Scholar 

  • Plank T, Langmuir CH (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362:739–743

    Article  Google Scholar 

  • Plank T, Balzer V, Carr M (2002) Nicaraguan Volcanoes record paleoceanographic changes accompanying closure of the Panama gateway. Geology 30(12):1087–1090. doi:10.1130/0091-7613(2002)030

    Article  Google Scholar 

  • Ranero C, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373. doi:10.1038/nature01961

    Article  Google Scholar 

  • Reagan M, Gill J (1989) Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: implications for residual titanates in arc magma sources. J Geophys Res 94:4619–4633. doi:10.1029/JB094iB04p04619

    Article  Google Scholar 

  • Reubi O, Bourdon B, Dungan MA, Koornneef JM, Sellés D, Langmuir CH, Aciego S (2011) Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcán Llaima, Chile. Earth Planet Sci Lett 303:37–47. doi:10.1016/j.epsl.2010.12.018

    Article  Google Scholar 

  • Rickwood PC (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22:247–263

    Article  Google Scholar 

  • Rychert CA, Fischer KM, Abers GA, Plank T, Syracuse E, Protti JM, Gonzales V, Strauch W (2008) Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua. Gechem Geophys Geosyst 9:Q10S10. doi:10.1029/2008GC002040

    Google Scholar 

  • Sadofsky SJ, Portnyagin MV, Hoernle K, van den Bogaard P (2008) Subduction cycling of volatile and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib Mineral Petrol 155(4):433–456. doi:10.1007/s00410-007-0251-3

    Article  Google Scholar 

  • Sadofsky SJ, Hoernle K, Duggen S, Hauff F, Werner R (2009) Geochemical variations on the Cocos Plate subducting offshore of Central America. Int J Earth Sci 98:901–913. doi:10.1007/s00531-007-0289-5

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05004. doi:10.1029/2003GC000597

    Article  Google Scholar 

  • Savov IP, Ryan JG, D’Antonio M, Fryer P (2007) Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. J Geophys Res 112:B09205. doi:10.1029/2006JB004749

    Google Scholar 

  • Sellés D (2006) Stratigraphy, petrology, and geochemistry of Nevado de Longaví volcano, Chilean Andes (36.2°S). PhD thesis, Université de Geneve, 103 p

  • Sellés D, Rodríguez C, Dungan MA, Naranjo J, Gardeweg M (2004) Geochemistry of Nevado de Longaví volcano (36.2°S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Rev Geol Chile 31:293–315

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Spandler C, Hermann J, Faure K, Mavrogenes JA, Arculus RJ (2008) The importance of talc and chlorite ‘‘hybrid’’ rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction melange of New Caledonia. Contrib Mineral Petrol 155:181–198. doi:10.1007/s00410-007-0236-2

    Article  Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31(2):161–206

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Spec Pub 42:313–345. doi:10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosys 7(5):Q05017. doi:10.1029/2005GC001045

    Article  Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Interiors 183:73–90. doi:10.1016/j.pepi.2010.02.004

    Article  Google Scholar 

  • Tassara A, Götze HJ, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111(B09404). doi:10.1029/2005JB003976

  • Tatsumi Y (1986) Formation of the volcanic front in subduction zones. Geophys Res Let 13(8):717–720

    Article  Google Scholar 

  • Tera F, Brown L, Morris J, Sacks IS, Klein J, Middleton R (1986) Sediment incorporation in island-arc magmas: inferences from 10Be. Geochim Cosmochim Acta 50:535–550. doi:10.1016/016-7037(86)90103-1

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1999) Phase relations of hydrous mantle subducting to 300 km. In: Fei Y, Bertka N, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation. Geochemical Society of Special Publication 6:259–281

  • van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res 116(B01401). doi:10.1029/2010JB007922

  • Völker D, Kutterolf S, Wehrmann H (2011) Comparative mass balance of volcanic edifices at the Southern Volcanic Zone of the Andes between 33°S and 46°S. J Volc Geotherm Res 205:114–129. doi:10.1016/j.volgeores.2011.03.011

    Article  Google Scholar 

  • von Huene R, Scholl DW (1991) Observations concerning sediment subduction and subduction erosion, and the growth of continental crust at convergent ocean margins. Rev Geophys 29:279–316

    Article  Google Scholar 

  • Watt SFL, Pyle DM, Mather TA (2011) Geology, petrology and geochemistry of the dome complex of Huequi volcano, southern Chile. Andean Geol 38(1):335–348

    Google Scholar 

  • Wehrmann H, Hoernle K, Jacques G, Garbe-Schönberg D, Schumann K, Mahlke J, Lara L (in review/this volume) Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43°S). Int J Earth Sci

  • Wehrmann H, Hoernle K, Portnyagin M, Wiedenbeck M, Heydolph K (2011) Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras. Geochem Geophys Geosys 12(6):Q06003. doi:10.1029/2010GC003412

    Article  Google Scholar 

  • Werner R, Hoernle K, van den Bogaard P, Ranero C, von Huene R, Korich D (1999) Drowned 14-m.y.-old Galapagos Archipelago off the coast of Costa Rica; implications for tectonic and evolutionary models. Geology 27:499–502. doi:10.1130/0091-7613(1999)027<0499:DMYOGP>2.3.CO;2

    Article  Google Scholar 

  • Werner R, Hoernle K, Barckhausen U, Hauff F (2003) Geodynamic evolution of the Galápagos hot spot system (central east Pacific) over the past 20 m.y.: constraints from morphology, geochemistry, and magnetic anomalies. Geochem Geophys Geosyst 4(12):1108. doi:10.1029/2003GC000576

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank Julian Pearce and an anonymous reviewer for constructive comments that improved the manuscript. Ralf Halama is acknowledged for comments and for the editorial handling of the paper. We would also like to thank Paul van den Bogaard, Luis Lara, Jorge Clavero, Daniel Sellés, Katja Hockun, and Rayén Rivera-Vidal for their assistance in the field. The Chilean arrieros Titin, Gerardo, Valdemar, Roberto, Nano, and their colleagues are acknowledged for providing horses and guidance in difficult terrains on Chilean volcanoes. We are grateful to Eduardo Boisset for his excellent performance during helicopter-based sampling campaigns in the high Andes. David Völker and the crew of the RV Sonne cruise 210 are thanked for obtaining and providing the marine sediment samples offshore Chile. Ken Heydolph contributed fruitful comments and discussion. Credit is due to Philipp Rohde and Silvia Gütschow for their assistance with the sample preparation and to Ulrike Westernströer for her help with the ICP-MS analyses. This paper is contribution No. 254 of Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones”, funded by the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Wehrmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 161 kb)

Supplementary material 2 (ZIP 211 kb)

531_2013_917_MOESM3_ESM.xls

SVZ trace element ratios used in this study plotted versus Mg number (left) and SiO2 (right) to facilitate evaluation of the influence of magma-genetic processes versus possible effects of differentiation (XLS 7849 kb)

531_2013_917_MOESM4_ESM.eps

Compilation of results for all reference materials measured during the analytical runs this study is based on, to demonstrate analytical repeatability and trueness of the trace element data over eight years from 2004 to 2011 (EPS 115 kb)

Supplementary material 5 (EPS 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehrmann, H., Hoernle, K., Garbe-Schönberg, D. et al. Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas. Int J Earth Sci (Geol Rundsch) 103, 1929–1944 (2014). https://doi.org/10.1007/s00531-013-0917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0917-1

Keywords

Navigation