Skip to main content

Advertisement

Log in

Tectonic and climatic forcing on the Panj river system during the Quaternary

  • Review article
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Surface processes involve complex feedback effects between tectonic and climatic influences in the high mountains of Pamir. The ongoing India–Asia collision provokes the development of east–west-trending mountain ranges that impose structural control on flow directions of the Pamir rivers. The evolving relief is further controlled by strong moisture gradients. The decreasing precipitations from the southern and western margins of the Pamir Plateau to its center, in their turn, control the emplacement of glaciers. Chronologies of glacial records from the Pamir Plateau attest for strong climatic variability during the Quaternary. Corresponding remnants of glacial advances suggest glacial morphodynamic restricted to >4,000 m a.s.l. since marine isotope stage 4. The Panj, the trunk river of Pamir, deflects from the predominant westward drainage, connecting its main tributaries at the western margin of the drainage basin. The geometry of the river network and the pattern of incision characterize the Panj as a composite river. River reaches of indicated low incision coincide with west-trending valleys, parallel to domes and their bounding faults. Valley shape ratios reflect increased incision in north-trending sections, but do not match with changes in the catchment geometry or erodibility of rock types. Modelled riverbed profiles distinguish three Panj reaches. The upstream increase in convexity suggests successive river captures in response to local base-level changes. The northward-deflected river reaches link the local base levels, which coincide with the southern boundaries of the Shakhdara and Yazgulom Dome and Darvaz Range. We argue that tectonics plays a large role controlling the drainage system of the Panj and hence surface processes in the Pamir mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramowski U, Bergau A, Seebach D, Zech R, Glaser B, Kubik PW, Zech W (2006) Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quat Sci Rev 25:1080–1096

    Article  Google Scholar 

  • Andermann C, Bonnet S, Gloaguen R (2011) Evaluation of precipitation data sets along the Himalayan front. Geochem Geophys Geosys 12:Q07023. doi:10.1029/2011GC003513

    Article  Google Scholar 

  • Barry R (2008) Mountain weather and climate. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benn DI, Owen LA (1998) The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. J Geol Soc 155:353–363

    Article  Google Scholar 

  • Bershaw J, Garzione CN, Schoenbohm L, Gehrels G, Tao L (2012) Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China). J Asian Earth Sci 44:136–148

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115:1–25

    Article  Google Scholar 

  • Bookhagen B, Thiede RC, Strecker MR (2005) Late quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33:149–152

    Article  Google Scholar 

  • Brookfield ME (2008) Evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining north from the Pamir syntaxis. Geomorphology 100:296–311

    Article  Google Scholar 

  • Brunel M, Arnaud N, Tapponnier P, Pan Y, Wang Y (1994) Kongur Shan normal fault: type example of mountain building assisted by extension (Karakoram fault, eastern Pamir). Geology 22:707–710

    Article  Google Scholar 

  • Bull BW (2007) Tectonic geomorphology of mountains. a new approach to paleoseismology. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell Publishing, Oxford

    Google Scholar 

  • Burtman VS, Molnar P (1993) Geological and geophysical evidence for deep subduction of the continental crust beneath the Pamir. Geological Society of America Special Paper 281, p 76

  • Carrasco JF, Casassa G, Quintana J (2005) Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century. Hydrol Sci J 50:933–948

    Article  Google Scholar 

  • Chevalier M-C, Tapponier P, van der Woerd J, Ryerson FJ, Finkel RC, Li H (2012) Spatially constant slip rate along the southern segment of the Karakorum fault since 200 ka. Tectonophysics 530–531:152–179

    Article  Google Scholar 

  • Coutand I, Strecker MR, Arrowsmith JR, Hilley G, Thiede RC, Korjenkov A, Omuraliev M (2002) Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir-Tien Shan region, central Asia): an example of intracontinental deformation due to the Indo-Eurasia collision. Tectonics 21:1053–1072

    Article  Google Scholar 

  • Cowgill E (2010) Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. Geol Soc Am Bull 122:145–161. doi:10.1130/B26520.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Derbyshire E, Shi Y, Li J, Zheng B, Li S, Wang J (1991) Quaternary glaciation of Tibet: the geological evidence. Quat Sci Rev 10:485–510

    Article  Google Scholar 

  • Dodonov AE (2002) The quaternary of middle Asia. Transactions of the Russian Academy of Science, Geological Institute 546, p 250 (in Russian)

    Google Scholar 

  • Ducea MN, Lutkov V, Minaev VT, Hacker B, Ratschbacher L, Luffi P, Schwab M, Gehrels GE, McWilliams M, Vervoort J, Metcalf J (2003) Building the Pamirs: the view from the underside. Geol Soc Am 31:849–852

    Google Scholar 

  • Fan G, Ni JF, Wallace TC (1994) Active tectonics of the Pamirs and Karakorum. J Geophys Res 99:7131–7160

    Article  Google Scholar 

  • Frechen M, Dodonov AE (1998) Loess chronology in the middle and upper Pleistocene in Tadjikistan. Geol Rundsch 87:2–20

    Article  Google Scholar 

  • Fuchs MC, Gloaguen R, Krbetschek MR, Szulc A (2012) OSL dating of fluvial terraces for incision rate estimation and indication of neotectonic activity in Pamir. EGU Geophys Res Abstracts 13:EGU2012-10777

    Google Scholar 

  • Gloaguen R, Ratschbacher L (2011) Growth and collapse of the Tibetan Plateau: introduction. Geol Soc Lond Spec Publ 353:1–8. doi:10.1144/SP353.1

    Article  Google Scholar 

  • Grosswald MG, Kuhle M, Fastook JL (1994) Wuerm glaciation of Lake Issyk-Kul Area, Tian Shan Mts.: a case study in glacial history of Central Asia. In: Kuhle M (ed) Tibet and high Asia. Results of the Sino-German and Russian-German joint expeditions (III). GeoJournal 33:273–310

    Article  Google Scholar 

  • Hack J (1957) Studies of longitudinal stream profiles in Virginia and Maryland. U S Geol Surv Prof Pap 294-B:45–97

    Google Scholar 

  • Hack J (1973) Stream-profile analysis and stream-gradient index. J. Res. U.S. Geol. Surv. 1:421–429

    Google Scholar 

  • Hancock GS, Anderson RS (2002) Numerical modelling of fluvial strath-terrace formation in response to oscillating climate. Geol Soc Am Bull 114:1131–1142

    Google Scholar 

  • Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178

    Article  Google Scholar 

  • Hubberten HW, Andreev A, Astakhov VI, Demidov I, Dowdeswell JA, Henrikson M, Hjort C, Houmark-Nielsen M, Jakobsson M, Kuzmina S, Larsen E, Lunkka JP, Lysa A, Mangerud J, Moeller P, Saarnisto M, Schirrmeister L, Sher AV, Siegert C, Siegert MJ, Svendsen JI (2004) The periglacial climate and environment in northern Eurasia during the Last Glaciation. Quat Sci Rev 23:1333–1357

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorology 8:38. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Jarvis A, Reuter H, Nelson A (2008) Hole-filled seamless SRTM data V4. CIAT: http://srtm.csi.cgiar.org

  • Kamp U, Haserodt K, Shroder J (2004) Quaternary landscape evolution in the eastern Hindu Kush, Pakistan. Geomorphology 57:1–27

    Article  Google Scholar 

  • Koppes M, Gillespie AR, Burke RM, Thompson SC, Stone J (2008) Late quaternary glaciation in the Kyrgyz Tien Shan. Quat Sci Rev 27:846–866

    Article  Google Scholar 

  • Koulakov I, Sobolev SV (2006) A Tomographic Image of Indian Lithosphere Break-off beneath the Pamir Hindukush Region. Geophys J Int 164:425–440

    Article  Google Scholar 

  • Kuhle M (1997) New findings concerning the ice age (Last Glacial Maximum) glacier cover of the East Pamir, of the Nanga Parbat up to the Central Himalaya and of Tibet, as well as the age of the Tibetan inland ice. GeoJournal 42:87–257

    Article  Google Scholar 

  • Kuhle M (2011) The high glacial (last ice age and last glacial maximum) ice cover of high and central asia, with a critical review of some recent OSL and TCN dates. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciation: extent and chronology, Part IV: a closer look. Dev Quat Sci 15:943–965

  • Le Pichon X, Fournier M, Jolivet L (1992) Kinematics, topography, shortening and extrusion in the India-Eurasia collision. Tectonics 11:1085–1098

    Article  Google Scholar 

  • Leland J, Reid MR, Burbank DW, Finkel R, Caffee M (1998) Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26Al exposure age dating of bedrock straths. Earth Planet Sci Lett 154:93–107

    Article  Google Scholar 

  • Mohadjer S, Bendick R, Ischuk A, Kuzikov S, Kostuk A, Saydullaev U, Lodi S, Kakar DM, Wasy A, Khan MA, Molnar P, Bilham R, Zubovich AV (2010) Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements. Geophys Res Lett 37:L04305

    Article  Google Scholar 

  • Narama C, Kondo R, Tsukamoto S, Kajiura T, Ormukov C, Abdrakhmatov K (2007) OSL dating of glacial deposits during the Last Glacial in the Terskey-Alatoo Range, Kyrgyz Republic. Quat Geochronol 2:249–254

    Article  Google Scholar 

  • Narama C, Kondo R, Tsukamoto S, Kajiura T, Duishonakunov M, Abdrakhmatov K (2009) Timing of glacier expansion during the Last Glacial in the inner Tien Shan, Kyrgyz Republic by OSL dating. Quat Int 199:147–156

    Article  Google Scholar 

  • Nesje A (1992) Topographic effects on the equilibrium-line-altitude on glaciers. GeoJouranal 27:383–391

    Google Scholar 

  • Owen LA, Kamp U, Spencer JQ, Haserodt K (2002a) Timing and style of late Quaternary glaciation in the eastern Hindu Kush, Chitral, northern Pakistan: a review and revision of the glacial chronology based on new optically stimulated luminescence dating. Quat Int 97–98:41–55

    Article  Google Scholar 

  • Owen LA, Finkel RC, Caffee MW, Gualtieri L (2002b) Timing of multiple late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan: defined by cosmogenic radionuclide dating of moraines. Geol Soc Am Bull 114:593–604

    Article  Google Scholar 

  • Owen LA, Caffee MW, Finkel RC, Seong YB (2008) Quaternary glaciation of the Himalayan-Tibetan orogen. J Quat Sci 23:513–531

    Article  Google Scholar 

  • Owen LA, Chen J, Hedrick KA et al (2012) Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir. Quat Sci Rev 47:57–72

    Article  Google Scholar 

  • Phillips WM, Sloan VF, Shroder JF Jr, Sharma P, Clarke ML, Rendell HM (2000) Asynchronous glaciation at Nanga Parbat, northwestern Himalaya Mountains, Pakistan. Geology 28:431–434

    Article  Google Scholar 

  • Pohl E, Gloaguen R (2012) Suspended sediment flux characteristics in the central Pamirs. EGU Geophys Res Abstracts 14:EGU2012-10528

    Google Scholar 

  • Prigent C (2010) Precipitation retrieval from space: an overview. C R Geosci 342:380–389

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Liu G, Chen CC (1994) Distributed deformation in southern and western Tibet during and after the India-Asian collision. J Geophys Res 99:19917–19945

    Article  Google Scholar 

  • Reigber C, Michel GW, Galas R, Angermann D, Klotz J, Chen JY, Papschev A, Arslanov R, Tzurkov VE, Ishanov MC (2001) New space geodetic constraints on the distribution of the deformation in Central Asia. Earth Planet Sci Lett 191:157–165

    Article  Google Scholar 

  • Richards BWM, Owen LA, Rhodes EJ (2000a) Timing of late Quaternary glaciations in the Himalayas of northern Pakistan. J Quat Sci 15:283–297

    Article  Google Scholar 

  • Richards BWM, Benn D, Owen LA, Rhodes EJ, Spencer JQ (2000b) Timing of Late Quaternary glaciations south of Mount Everest in the Khumbu Himal, Nepal: Geol. Soc Am Bull 112:1621–1632

    Article  Google Scholar 

  • Robinson AC, Yin A, Manning CE, Harrison TM, Zhang S-H, Wang X-F (2004) Tectonic evolution of the northeastern Pamir: constraints from the northern portion of the Cenozoic Kongur Shan extensional system. Geol Soc Am Bull 116:953–974

    Article  Google Scholar 

  • Robinson AC, Yin A, Manning CE, Harrison TM, Zhang S-H, Wang X-F (2007) Cenozoic evolution of the eastern Pamir: implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen. Geol Soc Am Bull 119:882–896

    Article  Google Scholar 

  • Robinson AC, Yin A, Lovera OM (2010) The role of footwall deformation and denudation in controlling cooling age patterns of detachment systems: an application to the Kongur Shan extensional system in the Eastern Pamir, China. Tectonophysics 496:28–43

    Article  Google Scholar 

  • Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33:645–671. doi:10.1146/annurev.earth.33.092203.122541

    Article  Google Scholar 

  • Roehringer I, Zech R, Abramowski U, Sosin P, Aldahan A, Kubik PW, Zoeller L, Zech W (2012) The late Pleistocene glaciation in the Bogchigir Valleys (Pamir, Tajikistan) based on 10Be surface exposure dating. Quat Res 78:590–597

    Article  Google Scholar 

  • Schmidt J, Hacker BR, Ratschbacher L, Stübner K, Stearns M, Kylander-Clark A, Cottle JM, Alexander A, Webb G, Gehrels G, Minaev V (2011) Cenozoic deep crust in the Pamir. Earth Planet Sci Lett 312:411–421

    Article  Google Scholar 

  • Schurr B, Yuan X, Schneider F, Sippl C, Mechie J, Minaev V, Abdybachaev U, Oimahmadov I, Gadoev M, Negmatullaev S (2011) Seismicity and lithospheric structure in the Pamir—Hindu Kush—Tien Shan region from TIPAGE seismological data. EGU Geophys Res Abstracts 13:EGU2011-4822

    Google Scholar 

  • Schwab M, Ratschbacher L, Siebel W, McWilliams M, Minaev V, Lutkov V, Chen F, Stanek K, Nelson B, Frisch W, Wooden JL (2004) Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics 23:TC4002. doi:10.1029/2003TC001583

  • Seong YB, Owen LA, Bishop MP, Bush A, Clendon P, Copland P, Finkel R, Kamp U, Shroder JF (2007) Quaternary glacial history of the Central Karakoram. Quat Sci Rev 26:3384–3405

    Article  Google Scholar 

  • Seong YB, Owen LA, Yi CL, Finkel RC (2009a) Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geol Soc Am Bull 121:348–365

    Article  Google Scholar 

  • Seong YB, Owen LA, Yi C, Finkel RC, Schoenbohm L (2009b) Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan. Geomorphology 103:227–250

    Article  Google Scholar 

  • Shroder JF, Weihs BJ, Schettler MJ (2011) Mass movements in northeast Afghanistan. Phys Chem Earth 36:1267–1286

    Article  Google Scholar 

  • Singh T, Awasthi AK (2010) Stream profiles as indicator of active tectonic deformation along the Intra-Foreland Thrust, Nahan Salient, NW India. Curr Sci 98:95–98

    Google Scholar 

  • Sippl C, Schurr B, Schneider F, Yuan X, Mechie J, Haberland C, Gadoev M, Oimahmadov I, Abdybachaev U, Orunbaev S, Minaev V, Negmatullaev S, Rui H, Pingren L (2012) Seismicity of the Pamir and Hindu Kush: new constraints on regional tectonics. EGU Geophys Res Abstracts 14:EGU2012-3404

    Google Scholar 

  • Skofronick-Jackson GM, Kim M-J, Weinman JA, Chang D-E (2004) A physical model to determine snowfall over land by microwave radiometry. IEEE TGRS 42:1047–1058

    Google Scholar 

  • Sobel ER, Schoenbohm LM, Chen J, Thiede R, Stockli DF, Sudo M, Strecker MR (2011) Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: implications for Pamir orogenesis. Earth Planet Sci Lett 304:369–378

    Article  Google Scholar 

  • Strahler A, Muchoney D, Borak J, Friedl M, Gopal S, Lambin E, Moody A (1999) MODIS land cover product algorithm theoretical basis document (ATBD) Version 5.0—MODIS land cover and land-cover change. http://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf

  • Strecker M, Frisch W, Hamburger MW, Ratschbacher L, Semiletkin S, Zamoruyev A, Sturchio N (1995) Quaternary deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan. Tectonics 14:1061–1079

    Article  Google Scholar 

  • Stübner K, Ratschbacher L, Whipp DM, Jonckheere R, Dunkl I (2012) Exhumation of the Shaxdara gneiss dome, Pamir Mountains: Tectonics versus erosion. EGU Geophys Res Abstracts 14:EGU2012-10017

    Google Scholar 

  • Thompson LG, Yao T, Davis MG, Henderson KA, Mosley-Thompson E, Lin PN, Beer J, Synal HA, Cole-Dai J, Bolzan JF (1997) Tropical climate instability: the Last Glacial cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825

    Article  Google Scholar 

  • Trifonov VG (1978) Late Quaternary tectonic movements of western and central Asia. Geol Soc Am Bull 89:1059–1072

    Article  Google Scholar 

  • Velichko AA, Kononov YM, Faustova MA (1997) The last glaciation of Earth: size and volume of ice sheets. Quat Int 41(42):43–51

    Article  Google Scholar 

  • Vlasov NG, Dyakov YA, Cherev ES (1991) Geological map of the Tajik SSR and adjacent territories. 1:500,000, Vsesojuznoi Geol. Inst. Leningrad, Saint Petersburg

  • Waldhoer M, Appel E, Frisch W, Patzelt A (2001) Paleomagnetic investigation in the Pamirs and its tectonic implications. J Asian Earth Sci 19:429–451

    Article  Google Scholar 

  • Wang J, Zhou SZ, Zheng JX, Guo XZ (2011) Quaternary glacial geomorphology and glaciations of Kongur Mountain, eastern Pamir, China. Sci China Earth Sci 54:591–602

    Article  Google Scholar 

  • Wissmann HV (1959) Die heutige Vergletscherung und Schneegrenze in Hochasien, mit Hinweisen auf die Vergletscherung der letzten Eiszeit. Akademie der Wissenschaften und der Literatur, Abh. Math.-Nat.wiss.Kl. 14:1105–1407

  • Zabirov RD (1955) Oledenenie Pamira. GeografGIZ, Moskva (in Russian)

  • Zech R (2012) A Late Pleistocene glacial chronology from the Kitschi-Kurumdu Valley, Tien Shan (Kyrgyzstan), based on 10Be surface exposure dating. Quat Res 77:2810288. doi:10.1016/j.yqres.2011.11.008

    Article  Google Scholar 

  • Zech R, Abramowski U, Glaser B, Sosin P, Kubik PW, Zech W (2005a) Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic Be-10 exposure ages. Quat Res 64:212–220

    Article  Google Scholar 

  • Zech R, Glaser B, Sosin P, Kubik PW, Zech W (2005b) Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains from surface exposure dating. Earth Planet Sci Lett 237:453–461

    Article  Google Scholar 

Download references

Acknowledgments

We thank the DFG for funding our research associated with the TIPAGE project (Gl361/4-1) and we also want to thank the Academy of Science of Tajikistan for supporting our fieldworks. We used GMT (Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79, 579, 1998) QGIS (http://qgis.org/) and the R environment (http://www.r-project.org/) for most of the geomorphological processings and the resulting figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margret C. Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, M.C., Gloaguen, R. & Pohl, E. Tectonic and climatic forcing on the Panj river system during the Quaternary. Int J Earth Sci (Geol Rundsch) 102, 1985–2003 (2013). https://doi.org/10.1007/s00531-013-0916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0916-2

Keywords

Navigation