Skip to main content

Advertisement

Log in

Contrasting compositional trends of rocks and olivine-hosted melt inclusions from Cerro Negro volcano (Central America): implications for decompression-driven fractionation of hydrous magmas

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Melt inclusions in olivine Fo83–72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6–8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (<1 wt %) from primitive basaltic melt (average SiO2 = 49 wt %, MgO = 7.6 wt %, H2O = 6 wt %) as it ascended to the surface from the depth of about 14 km. The crystallization occurred at increasing liquidus temperature from 1,050 to 1,090 °C in the pressure range from 400 to 50 MPa and was induced by release of mixed H2O–CO2 fluid from the melt at decreasing pressure. Matrix glass compositions fall at the high-Si end of the melt inclusion trend and represent the final stage of melt crystallization during and after eruption. The bulk compositions of erupted Cerro Negro magmas (tephras and lavas) range from high- to low-MgO (3–10 wt %) basalts, which form a compositional array crossing the trend of melt inclusions so that virtually no rock from Cerro Negro has composition akin to true melt represented by the inclusions. The variations of the bulk magma (rocks) and melt (melt inclusions) compositions can be generated in a dyke connecting a deep primitive magma reservoir with the Cerro Negro edifice. While the melt inclusions represent the compositional trend of instantaneous melts along the magma pathway at decreasing pressure and H2O content, occurrence of low-Mg to high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeev RR, Holtz F, Koepke J, Parat P, Botcharnikov RE (2007) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Mineral 92:670–674

    Article  Google Scholar 

  • Anderson AT (1974) Chlorine, sulfur and water in magmas and oceans. Geol Soc Am Bull 85:1485–1492

    Article  Google Scholar 

  • Anderson AT (1982) Parental basalts in subduction zones: implications for continental evolution. J Geophys Res 87:7047–7060

    Article  Google Scholar 

  • Anderson AT, Brown GG (1993) CO2 contents and formation pressures of some Kilauean melt inclusions. Am Mineral 78:794–803

    Google Scholar 

  • Auer SL, Bindeman I, Wallace P, Ponomareva VV, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy Volcano, Kamchatka. Russia Contrib Mineral Petrol 157(2):209–230. doi:10.1007/s00410-008-0330-0

    Article  Google Scholar 

  • Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140:631–650

    Article  Google Scholar 

  • Borisov AA, Shapkin AI (1990) A new empirical equation rating Fe3 +/Fe2 + in magmas to their composition, oxygen fugacity, and temperature. Geochem Int 27:111–116

    Google Scholar 

  • Botscharnikov RE, Almeev RR, Koepcke J, Holtz F (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt—implications for the Skaergaard intrusion and Columbia River Flood Basalts. J Petrol 49(9):1687–1727. doi:10.1093/petrology/egn043

    Article  Google Scholar 

  • Brophy J (2009) Decompression and H2O exsolution driven crystallization and fractionation: development of a new model for low-pressure fractional crystallization in calc-alkaline magmatic systems. Contrib Mineral Petrol 157(6):797–811

    Article  Google Scholar 

  • Brophy JG, Whittington CS, Park Y-R (1999) Sector-zoned augite megacryts in Aleutian high alumina basalts: implications for the conditions of basaly crystallization and the generation of calc-alkaline series magmas. Contrib Mineral Petrol 135:277–290

    Article  Google Scholar 

  • Carr MJ, Walker JA (1987) Intra-eruption changes in composition of some mafic to intermediate tephras in Central America. J Volcanol Geotherm Res 33(1–3):147–159

    Article  Google Scholar 

  • Carr MJ, Feigenson MD, Bennett EA (1990) Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib Mineral Petrol 105:369–380

    Article  Google Scholar 

  • Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In: Eiler J, Abers G (eds) Inside the subduction factory. Geophysical Monograph, vol 138, pp 153–179

  • Cervantes P, Kamenetsky V, Wallace P (2002) Melt inclusion volatile contents, pressures of crystallization for Hawaiian picrites, and the problem of shrinkage bubbles. Eos Trans AGU 83(47) (Fall Meet. Suppl., Abstract V22A-1217)

  • Danyushevsky LV, Plechov P (2011) Petrolog3: integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12:Q07021. doi:10.1029/2011GC003516

    Article  Google Scholar 

  • Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83

    Article  Google Scholar 

  • Danyushevsky L, McNeill AW, Sobolev AV (2002a) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Danyushevsky LV, Sokolov S, Falloon T (2002b) Melt inclusions in phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43(9):1651–1671

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Longman, Harlow

    Google Scholar 

  • Eichelberger JC (1995) Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Ann Rev Earth Planet Sci 23(1):41–63

    Article  Google Scholar 

  • Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6:Q07007. doi:10.1029/2004GC000804

    Article  Google Scholar 

  • Ford CE, Russel DG, Graven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–265

    Article  Google Scholar 

  • Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geology 110:1231–1241

    Google Scholar 

  • Jarosewich EJ, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47

    Article  Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418. doi:10.1130/G25527A.1

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607. doi:10.1126/science.1174156

    Article  Google Scholar 

  • Lloyd AS, Plank T, Ruprecht P, Hauri E, Rose WI (2010) Volatile Loss from melt inclusions in clasts of differing sizes. Abstract V24C-04 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13–17 Dec.

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78(1):85–98

    Article  Google Scholar 

  • Mironov NL, Portnyagin MV (2011) H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine. Russ Geol Geophys 52(11):1353–1367. doi:10.1016/j.rgg.2011.10.007

    Article  Google Scholar 

  • Mironov NL, Portnyagin MV, Pletchov PY, Khubunaya SA (2001) Final stages of magma evolution in Klyuchevskoy Volcano, Kamchatka: evidence from melt inclusions in minerals of high-alumina basalts. Petrology 9(1):46–62

    Google Scholar 

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319

    Article  Google Scholar 

  • Naumov BV, Kovalenko VI, Babansky AD, Tolstykh ML (1997) Genesis of andesites: evidence from studies of melt inclusions in minerals. Petrology 5:586–596

    Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt H2O-CO2 solution model written in visual basic for excel. Comput Geosci 28(5):597–604

    Article  Google Scholar 

  • Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317. doi:10.1126/science.283.5406.1314

    Article  Google Scholar 

  • Plechova AA, Portnyagin MV, Bazanova LI (2011) The origin and evolution of the parental magmas of frontal volcanoes in Kamchatka: evidence from magmatic inclusions in olivine from Zhupanovsky volcano. Geochem Inter 49(8):743–768. doi:10.1134/S0016702911080064

    Article  Google Scholar 

  • Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272:541–552. doi:10.1016/j.epsl.2008.05.020

    Article  Google Scholar 

  • Portnyagin MV, Naumov VB, Mironov NL, Belousov IA (2011) The composition and evolution of parental melts of the 1996 AD eruption in Karymsky Lake (Eastern Kamchatka) from study of melt inclusions in olivine, clinopyroxene and plagioclase. Geochem Inter 49:1085–1110. doi:10.1134/S0016702911110085

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and Barometers for volcanic systems. In: Putirka KD, Tepley III GJ (eds) Minerals, inclusions and magmatic processes. Reviews in mineralogy and geochemistry, vol 69. Mineralogic Society of America, pp 61–120. doi:10.2138/rmg.2008.69.3

  • Reubi O, Blundy J (2009) A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461(7268):1269–1273

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions, reviews in mineralogy and geochemistry, vol 12. Mineralogic Society of America, Michigan (Book Crafters Inc., 644 pp)

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289. doi:10.1007/BF00371276

    Article  Google Scholar 

  • Roggensack K (2001) Sizing up crystals and their melt inclusions: a new approach to crystallization studies. Earth Planet Sci Lett 187(1–2):221–237

    Article  Google Scholar 

  • Roggensack K, Hervig RL, McKnight SB, Williams SN (1997) Explosive basalic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277:1639–1642

    Article  Google Scholar 

  • Rüpke L, Phipps Morgan J, Hort M, Connolly JAD (2002) Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30(11):1035–1038

    Article  Google Scholar 

  • Ruscitto DM, Wallace PJ, Johnson ER, Kent AJR, Bindeman IN (2010) Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett 298(1–2):153–161

    Article  Google Scholar 

  • Sadofsky S, Portnyagin M, Hoernle K, van den Bogaard P (2008) Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib Mineral Petrol 155(4):433–456. doi:10.1007/s00410-007-0251-3

    Article  Google Scholar 

  • Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Portnyagin MV (2010) Solubility of H2O and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 115–125. doi:10.1016/j.chemgeo.2010.07.014

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166

    Article  Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from 4 subduction-related volcanoes. Earth Planet Sci Lett 117(3–4):619–635

    Article  Google Scholar 

  • Sobolev AV (1996) Melt inclusions in minerals as a source of principal petrological information. Petrology 4:209–220

    Google Scholar 

  • Tuttle OF, Bowen NK (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O, Geological Society of America, Memoir 74, 153 pp

  • Wade JA, Plank T, Melson WG, Soto GJ, Hauri EH (2006) The volatile content of magmas from Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157(1–3):94–120

    Article  Google Scholar 

  • Walker JA, Carr MJ (1986) Compositional variations caused by phenocryst sorting at Cerro Negro volcano, Nicaragua. Geol Soc Am Bull 97:1156–1162

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240

    Article  Google Scholar 

  • Wehrmann H, Hoernle K, Portnyagin M, Wiedenbeck M, Heydolph K (2011) Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras. Geochem Geophys Geosyst 12:Q06003. doi:10.1029/2010GC003412

    Article  Google Scholar 

  • Whittington A, Richert P, Holtz F (2000) Water and the viscosity of depolymerized aluminosilicate melts. Geochim Cosmochim Acta 64(21):3725–3736

    Article  Google Scholar 

  • Yoshino T, Mibe K, Yasuda A, Fujii T (2002) Wetting properties of anorthite aggregates: implications for fluid connectivity in continental lower crust. J Geophys Res 107(B1):2027

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mario Thoener (GEOMAR) and Sergey Simakin (FTIAN, Yaroslavl, Russia) for their assistance with electron probe and ion probe studies and Seth Sadofsky for his efforts at the initial stage of the studies of magmatic volatiles in Central America. This work benefited greatly from inspiring discussions with Renat Almeev, Roman Botcharnikov, Francois Holtz, Anastasia Plechova, Tatyana Shishkina and Vera Ponomareva. We are very grateful to Jim Brophy, Andrea di Muro and Ralf Halama for their helpful critical comments and editorial handling. The study was performed as a part of the SFB 574 project funded by the German Science Foundation (DFG) and partially supported by the KALMAR project (to M.P.) and RFBR project #09-05-01234-a (to N.M.) while writing this manuscript. This is contribution #224 of the SFB 574 “Volatiles and fluids in subduction zones.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim V. Portnyagin.

Additional information

Contribution to the special SFB 574 volume “Volatiles and fluids in subduction zones” of the International Journal of Earth Sciences.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portnyagin, M.V., Hoernle, K. & Mironov, N.L. Contrasting compositional trends of rocks and olivine-hosted melt inclusions from Cerro Negro volcano (Central America): implications for decompression-driven fractionation of hydrous magmas. Int J Earth Sci (Geol Rundsch) 103, 1963–1982 (2014). https://doi.org/10.1007/s00531-012-0810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0810-3

Keywords

Navigation