Skip to main content

Advertisement

Log in

Seismic velocities from the Yaquina forearc basin off Peru: evidence for free gas within the gas hydrate stability zone

  • Original paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Multichannel seismic (MCS) data from the Yaquina forearc basin off Peru reveal a complex distribution of gas and gas hydrate related reflections. Lateral variations of the reflection pattern at the assumed base of the gas hydrate stability zone in terms of continuity, amplitude, and signal attenuation underneath are observed, as well as the possible occurrence of paleo-bottom simulating reflectors (BSRs). Phase reversed reflections above the bottom simulating reflector point to free gas within the gas hydrate stability zone (GHSZ). To constrain the interpretation of the observed reflection pattern we calculated the velocity distribution along the MCS line from high-resolution ocean bottom hydrophone recordings with two independent methods. Heat flux values estimated on the basis of the velocity-depth functions increase with decreasing amplitude of the BSR and peak near chemoherms. These results suggest a model of the Yaquina Basin where free gas is trapped under parts of the BSR, and within the GHSZ, particularly under the seafloor and under an erosional unconformity. The hypothesis of a paleo-BSR that reflects the uplift of the base of the hydrate stability zone caused by the deposition of a particular sediment sequence is supported by the estimated heat flux values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ballesteros MW, Moore GF, Taylor B, Ruppert S (1988) Seismic stratigraphic framework of the Lima and Yaquina forearc basins, Peru. In: Suess E, von Huene R (eds) Proceedings of ODP, initial reports 112. Ocean Drilling Program, College Station TX, pp 77–90

  • Bangs NL, Sawyer DS, Golovchenko X (1993) Free gas at the base of the gas hydrate zone in the vicinity of the Chile Tripple Junction. Geology 21:905–908

    Google Scholar 

  • Bialas J, Kukowski N (2000) Peruvian cruise reports fresh insights into gas hydrates. First Break 18.8:360–362

    Google Scholar 

  • Blair NE, Aller RC (1995) Anaerobic methane oxidation on the Amazon shelf. Geochim Cosmochim Acta 59:3707–3715

    Article  CAS  Google Scholar 

  • Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205:291–310. DOI:10.1016/j.chemgeo.2003.12.034

    Google Scholar 

  • Bourgois J,von Huene R, Pautot G, Huchon P (1988) Jean Charcot Seabeam survey along ODP Leg 112 northern transect. In: Suess E, von Huene R (eds) Proceedings of ODP, initial reports 112. Ocean Drilling Program, College Station, pp 131–137

  • Foucher JP, Nouzé H, Henry P (2002) Observation of a double BSR on the Nakai slope. Mar Geol 187:161–175

    Google Scholar 

  • Gorman AR, Holbrook WS, Hornbach M, Hackwith KL, Lizarralde D, Pecher IA (2002) Migration of methane gas through the hydrate stability zone in a low-flux hydrate province. Geology 30:327–330

    Google Scholar 

  • Grevemeyer L, Villinger H (2001) Gas hydrate stability and the assessment of heat flow through continental margins. Geophys J Int 145:647–660

    Google Scholar 

  • Hampel A (2002) The migration history of the Nazca Ridge along the Peruvian active margin: a re-evaluation. Earth Planet Sci Lett 203:665–679

    Google Scholar 

  • Helgerud MB, Dvorkin J, Nur A, Sakai A, Collett T (1999) Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys Res Lett 26(13):2021–2024

    Google Scholar 

  • Hempel P, Spiess V, Schreiber R (1994) Expulsion of shallow gas in the Skagerrak—evidence from sub-bottom profiling, seismic, hydroacoustical and geochemical data. Estuarine Coastal Shelf Sci 38:583–601

    Google Scholar 

  • Holbrook WS, Hoskins H, Wood WT, Stephen RA, Lizarralde D, The Leg 164 Shipboard Scientific Party (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273:1840–1843

    Google Scholar 

  • Holbrook WS, Gorman AR, Hornbach MJ, Hackwith KL, Nealon J, Lizarralde D, Pecher IA (2002) Seismic detection of marine methane hydrate. Leading Edge 21/7:686–689

    Google Scholar 

  • Hornbach MJ, Holbrook WS, Gorman AR, Hackwith KL, Lizarralde D, Pecher IA (2003) Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics 68/1:92–100. DOI: 10.1190/1.1543196

    Google Scholar 

  • Hübscher CP, Kukowski N (2003) Complex BSR Pattern in the Yaquina Basin off Peru: implications for impact of anisotropic permeability and tectonic. Geol Mar Lett 23/2:91–101. DOI: 10.1007/s00367-003-0128-z

    Google Scholar 

  • von Huene R, Pecher IA (1999) Neotectonics and the origins of BSRs along the Peru margin. Earth Planet Sci Lett 166:47–55

    Google Scholar 

  • Katzman R, Holbrook WS, Paull CK (1994) Combined vertical-incidence and wide-angle seismic study of a gas hydrate zone, Blake Ridge. J Geophys Res 99:17975–17995

    Google Scholar 

  • Kaul N, Rosenberger A, Villinger H (2000) Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan. Mar Geol 164:37–51

    Google Scholar 

  • Korenaga J, Holbrook WS, Singh SC, Minshull TA (1997) Natural gas hydrates on the southeast US Margin: constraints from full waveform inversion and traveltime inversions of wide-angle seismic data. J Geophys Res 99:9681–9695

    Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. In: Henriet JP, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Spec Pub 137, London, pp 9–30

  • Kvenvolden KA, Kastner M (1990) Gas hydrates of the Peruvian outer continental margin. In: Suess E, von Huene R (eds) Proceedings of ODP, scientific results 112. Ocean Drilling Program, College Station, pp 517–526

  • Lee W, Hutchinson DR, Collett TS, Dillon WP (1996) Seismic velocities for hydrate-bearing sediments using weighted equation. J Geophys Res 101:20347–20358

    Google Scholar 

  • Lodolo E, Camerlenghi A, Madrussani G, Tinivella U, Rossi G (2002) Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data. Geophys J Int 148:103–119

    Google Scholar 

  • Lüdmann T, Wong HK (2003) Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk. Mar Geol 201:269–286. DOI: 10.1016/S0025-3227(03)00224-X

    Google Scholar 

  • MacKay ME, Jarrard RD, Westbrook GK, Hyndman RD (1994) Origin of bottom simulating reflectors: geophysical evidence from the Cascadia accretionary prism. Geology 22:459–462

    Google Scholar 

  • Mienert J, Posewang J (1999) Evidence of shallow- and deep-water gas hydrate destabilizations in North Atlantic polar continental margin sediments. Geol Mar Lett 19:143–149

    Google Scholar 

  • Milkov VA, Dickens GR, Claypool GE, Lee Yj, Borowski WS, Torres ME, Xu W, Tomaru H, Tréhu AM, Schultheiss P (2004) Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margi): evidence from prolonged degassing of a pressurized core. Earth Planet Sci Lett 222:829–843. DOI:10.1016/jepsl.2004.03.028

  • Miller JJ, Lee MW, von Huene R (1991) An analysis of a seismic reflection from a base of a gas hydrate zone, offshore Peru. Am Assoc Petrol Geol Bull 75(5):910–924

    Google Scholar 

  • Minshull TA, Singh SC, Westbrook GK (1994) Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion. J Geophys Res 99:4715–4734

    Google Scholar 

  • Moore GF, Taylor B (1988) Structure of the Peru forearc from multichannel seismic reflection data. In: Suess E, von Huene R (eds) Proceedings of ODP, initial reports 112. Ocean Drilling Program, College Station, pp 71–76

  • Pecher IA (1995) Seismic studies of bottom simulating reflectors at the convergent margins offshore Peru and Costa Rica. PhD Thesis, University of Kiel. GEOMAR report 47:159

    Google Scholar 

  • Pecher IA, Minshull TA, Singh SC, von Huene R (1996) Free gas at a bottom simulating reflector off Peru: results from full waveform inversion. Earth Planet Sci Lett 139:459–469

    Google Scholar 

  • Pecher IA, Kukowski N, Hübscher C, Greinert P, Bialas J, GEOPECO Working Group (2001) The link between bottom-simulating reflections and methane flux into the gas hydrate stability zone—new evidence from Lima Basin, Peru Margin. Earth Planet Sci Lett 185:343–354

    Google Scholar 

  • Posewang J, Mienert J (1999a) High-resolution seismic studies of gas hydrates west of Svalbard. Geol Mar Lett 19:150–156

    Google Scholar 

  • Posewang J, Mienert J (1999b) The enigma of double BSRs: indicators for changes in the hydrate stability field. Geol Mar Lett 19:157–163

    Google Scholar 

  • Rowe MM, Gettrust JF (1993) Fine structure of methane hydrate-bearing sediments on the Blake outer ridge as determined from deep-tow multichannel seismic data. J Geophys Res 98:463–473

    Google Scholar 

  • Shipboard Scientific Party (1988a) Proceedings of ODP, initial reports 112. Ocean Drilling Program, College Station

  • Shipboard Scientific Party (1988b) Site 685. In: Suess E, von Huene R et al (eds) Proceedings of ODP, initial reports 112, College Station, pp 597–704

  • Shipboard Scientific Party (2002) In: Proceedings of ODP, initial reports 204, Ocean Drilling Program, College Station

  • Shipley TH, Houston M, Buffler R (1979) Seismic reflection evidence for the widespread occurrence of possible gas hydrate horizons on continental slopes and rises. Am Assoc Petrol Geol Bull 63:2204–2213

    Google Scholar 

  • Singh SC, Minshull TA, Spence GD (1993) Velocity structure of a gas hydrate reflector. Science 260:204–207

    Google Scholar 

  • Sloan ED (1990) Clathrate hydrates of natural gases. Marcel Bekker Inc, New York, p 641

    Google Scholar 

  • Sloan ED Jr (1998) Physical/chemical properties of gas hydrates and applications to world margin stability and climate change. In: Henriet JP, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Spec Pub 137, London, pp 31–50

  • Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehter G, Trehu AM, Wallmann K, Winckler G, Zulegger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover, and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    Article  CAS  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Heuser A, Sahling H, Heeschen K, Jung C, Nakamura K, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar MJ, Eisenhauer A, Teichert B, Elvert M (2001) Sea floor methane hydrates at Hydrate Ridge, Cascadia margin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. Am Geophys Union, Geophys Monogr Ser 124, pp 87–98

  • Torres ME, Colbert S, Collier RW, deAngelis M, Hammond D, Heeschen K, Hubbard D, McManus J, Moyer C, Rehder G, Trehu AM, Tyron M, Whaling P (1998) Active gas discharge resulting from decomposition of gas hydrates on Hydrate Ridge, Cascadia margin. Eos Trans 79:461

    Google Scholar 

  • Whalley E (1980) Speed of longitudinal sound in clathrate hydrates. J Geophys Res 85:2539–2542

    Google Scholar 

  • Wood WT, Stoffa PL, Shipley TH (1994) Quantitative detection of methane hydrate through high-resolution seismic velocity analysis. J Geophys Res 99:9681–9695

    Google Scholar 

  • Yamano M, Uyeda S (1990) Heat flow studies in the Peru subduction zone. In: Proceedings of ODP, scientific results 112, Ocean Drilling Program, College Station, pp 653–661

  • Yamano M, Uyeda S, Aoki Y, Shipley TH (1982) Estimates of heat flow derived from gas hydrates. Geology 10:339–343

    Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 8:16–34

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dirk Kläschen for the initial geometry processing of OBH recording. Thanks to Nina Kukowski and Ingo Pecher for fruitful discussions. Special thanks to Tim Minshull for his comments on this manuscript. We also want to thank Ingo Pecher and Kirk McIntosh, the manuscript was greatly improved by their reviews. Further, we are grateful to Captain H. Papenhagen and his crew for the excellent support onboard RV Sonne. The GEOPECO project was funded by BMBF grant 03G0146B/0. Additional funding was supplied by the Marie Curie Training Site at Southampton Oceanography Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesa L. Netzeband.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netzeband, G.L., Hübscher, C.P., Gajewski, D. et al. Seismic velocities from the Yaquina forearc basin off Peru: evidence for free gas within the gas hydrate stability zone. Int J Earth Sci (Geol Rundsch) 94, 420–432 (2005). https://doi.org/10.1007/s00531-005-0483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0483-2

Keywords

Navigation