Skip to main content

Advertisement

Log in

The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data

  • Special Issue (UTCI)
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In the present study, we investigate the determination accuracy of the Universal Thermal Climate Index (UTCI). We study especially the UTCI uncertainties due to uncertainties in radiation fluxes, whose impacts on UTCI are evaluated via the mean radiant temperature (Tmrt). We assume “normal conditions”, which means that usual meteorological information and data are available but no special additional measurements. First, the uncertainty arising only from the measurement uncertainties of the meteorological data is determined. Here, simulations show that uncertainties between 0.4 and 2 K due to the uncertainty of just one of the meteorological input parameters may be expected. We then analyse the determination accuracy when not all radiation data are available and modelling of the missing data is required. Since radiative transfer models require a lot of information that is usually not available, we concentrate only on the determination accuracy achievable with empirical models. The simulations show that uncertainties in the calculation of the diffuse irradiance may lead to Tmrt uncertainties of up to ±2.9 K. If long-wave radiation is missing, we may expect an uncertainty of ±2 K. If modelling of diffuse radiation and of longwave radiation is used for the calculation of Tmrt, we may then expect a determination uncertainty of ±3 K. If all radiative fluxes are modelled based on synoptic observation, the uncertainty in Tmrt is ±5.9 K. Because Tmrt is only one of the four input data required in the calculation of UTCI, the uncertainty in UTCI due to the uncertainty in radiation fluxes is less than ±2 K. The UTCI uncertainties due to uncertainties of the four meteorological input values are not larger than the 6 K reference intervals of the UTCI scale, which means that UTCI may only be wrong by one UTCI scale. This uncertainty may, however, be critical at the two temperature extremes, i.e. under extreme hot or extreme cold conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ASHRAE (2001) ASHRAE Handbook: Fundamentals, 8. American Society of Heating and Air-Conditioning Engineers, Atlanta, GA

    Google Scholar 

  • Badescu V (1997) Verificaton of some very simple clear and cloudy sky models to evaluate global solar irradiance. Sol Energy 61:251–264

    Article  Google Scholar 

  • Blazejczyk K (1997) Modèle statistique de la fraction du rayonnement solaire diffus à partir de différents types de nébulosité. Publication de l’Association Internationale de Climatologie, Vol 10, pp 119–125

  • Boland J, Ridley B, Brown B (2008) Models of diffuse solar radiation. Renew Energy 33(4):575–584. doi:10.1016/j.renene.2007.04.012

    Article  CAS  Google Scholar 

  • Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11:742–744

    Article  Google Scholar 

  • Choi M, Jacobs JM, Kustas W (2008) Assessment of clear and cloudy sky parametrizations for daily downwelling longwave radiation over different land surfaces in Florida, USA. Geophys Res Lett 35:L20402. doi:10.1029/2008GL035731

    Article  Google Scholar 

  • Crawford TM, Duchon CE (1999) An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J Appl Meteorol 38:474–480

    Article  Google Scholar 

  • Dahlback A, Stamnes K (1991) A new spherical model for computing the radiation field available for photolysis and heating at twilight, Planet. Space Sci 39:671–683

    Article  Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with an inclusion of a layer of vegetation. J Geophys Res 83:1889–1903

    Article  Google Scholar 

  • Dilley AC, O’Brien DM (1998) Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q J R Meteorol Soc 124:1391–1401

    Article  Google Scholar 

  • Duarte HF, Dias NL, Maggioto SR (2006) Assessing daytime downward longwave radiation estimates for clear and cloudy skies in southern Brazil. Agric For Meteorol 139:171–181

    Article  Google Scholar 

  • Fanger PO (1970) Thermal Comfort. Danish Technical Press, Copenhagen, Analysis and Application in Environment Engineering

    Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. J Appl Physiol 87(5):1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159

    Article  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2003) First principles modelling of thermal sensation responses in steady state and transient boundary conditions. ASHRAE Trans 109(1):179–186

    Google Scholar 

  • Fiala D, Bunzl A, Lomas KJ, Cropper PC, Schlenz D (2004) A new simulation system for predicting human thermal and perceptual responses in vehicles. In: D. Schlenz (ed). PKW-Klimatisierung III: Klimakonzepte, Regelungsstrategien und Entwicklungsmethoden. Haus der Technik Fachbuch Band 27, Expert, Renningen, pp. 147-162

  • Gopinathan KKA, Soler A (1995) Diffuse radiation models and monthly average, daily diffuse data for a wide latitude range. Energy 20:657–667

    Article  Google Scholar 

  • Gryning S, Batchvarova E, De Bruin HAR (2001) Energy balance of a sparse coniferous high-latitude forest under winter conditions. Bound Lay Meteorol 99:465–488

    Article  Google Scholar 

  • Gueymard CA, Myers DR (2009) Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modelling. Sol Energy 83(2):171–185

    Article  Google Scholar 

  • Gueymard CA, Myers DR (2008) Validation and ranking methodologies for solar radiation models. In: Badescu V (ed) Modeling solar radiation at the earth’s surface. Recent advances. Springer, Heidelberg

    Google Scholar 

  • Halthore RN, Crisp D, Schwartz SE, Anderson GP, Berk A, Bonnel B, Boucher O, Chang F, Chou M, Clothiaux EE, Dubuisson P, Fomin B, Fouquart Y, Freidenreich S, Gautier C, Kato S, Laszlo I, Li Z, Mather JH, Plana-Fattori A, Ramaswamy V, Ricchiazzi P, Shiren Y, Trishchenko A, Wiscombe W (2005) Intercomparison of shortwave radiative transfer codes and measurements. J Geophys Res, 110, doi:1029/2004JD005293

  • Havenith G (2001) Human surface to mass ratio and body core temperature in exercise heat stress - a concept revisited. J Therm Biol 26(4–5):387–393

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36(6):691–699

    Article  Google Scholar 

  • Ineichen P (2006) Comparison of eight broadband models against 16 independent data banks. Sol Energy 80:468–478

    Article  Google Scholar 

  • Jacovides CP, Tymvios FS, Assimakopoulos VD, Kaltsounides NA (2006) Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation. Renew Energy 31:2492–2504

    Article  Google Scholar 

  • Jendritzky G, Nübler W (1981) A Model Analysing the Urban Thermal Environment in Physiologically Significant Terms. Arch Meteorol Geophys Biokl B 29(4):313–326

    Article  Google Scholar 

  • Jendritzky G, Sönning W, Swantes HJ (1979) Ein objektives Bewertungsverfahren zur Beschreibung des thermischen Milieus in der Stadt- und Landschaftsplanung ("Klima-Michel-Modell"). Beitr. Akad. f. Raumforschung u. Landesplanung 28, 85 S

  • Jendritzky G, Schirmer H, Menz G, Schmidt-Kessen W (1990) Methode zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Akad Raumforschung Landesplanung, Hannover, Beiträge 114, ISSN 0935-0772

  • Jendritzky G, Maarouf A, Fiala D, Staiger H (2002) An update on the development of a Universal Thermal Climate Index. 15th Conf Biometeorol Aerobiol and 16th ICB02, 27 Oct – 1 Nov 2002, Kansas City, AMS, 129-133

  • Kasten F, Young AT (1989) Revised optical air mass tables and approximation formula. Appl Opt 28:4735–4738

    Article  CAS  Google Scholar 

  • Kasten F (1996) The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness. Sol Energy 56:239–244

    Article  CAS  Google Scholar 

  • Konz S, Hwang C, Dhiman B, Duncan J, Masud A (1977) An experimental validation of mathematical simulation of human thermoregulation. Comput Biol Med 7:71–82

    Article  CAS  Google Scholar 

  • Konzelmann T, van der Wal RSW, Feuell W, Bintanja R, Henneken EAC, Abe-Ouchi A (1994) Parameterization of global and longwave incoming radiation for the Greenland ice sheet. Glob Planet Change 9:143–164

    Article  Google Scholar 

  • Long CN, Turner DD (2008) A method for continuous estimation of clear-sky down-welling longwave radiatiave flux developed using ARM surface measurements. J Geophys Res 113:D18206. doi:101029/2008JD009936

    Article  Google Scholar 

  • Martin M, Berdahl P (1984) Characteristics of infrared sky radiation in the United States. Sol Energy 33:321–336

    Article  Google Scholar 

  • Marty C, Philipona R, Delamere J, Dutton EG, Michalsky J, Stamnes K, Storvold R, Stoffel T, Clough SA, Mlawer EJ (2003) Downward longwave irradiance uncertainty under arctic atmospheres: measurements and modeling. J Geophys Res 108(D12):4358

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2009) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol. doi:10.1007/s00484-009-0261-0

    Google Scholar 

  • Maykut GA, Church P (1973) Radiation climate of Barrow, Alaska. J Appl Meteorol 12:620–628

    Article  Google Scholar 

  • Niemelä S, Raisanen P, Savijarvi H (2001) Comparison of surface radiative flux parameterizations, part I: long-wave radiation. Atmos Res 58:1–18

    Article  Google Scholar 

  • Michalsky J et al (1999) Optimal measurement of surface shortwave irradiance using current instrumentation. J Atmos Ocean Technol 16:55–69

    Article  Google Scholar 

  • Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122:1127–1151

    Article  Google Scholar 

  • Reda I, Hickey JR, Stoffel T, Myers D (2002) Pyrgeometer calibration at the National Renewable Energy Laboratory (NREL). J Atmos Sol Terr Phys 64(15):1623–1629

    Article  Google Scholar 

  • Remund J, Wald L, Lefevre M, Ranchin T (2003) Worldwide Linke Turbidity Information. Proceedings of ISES Solar World Congress, 16–19 June 2003, Göteborg, Sweden, CD-ROM published by the International Solar Energy Society

  • Richards M, Fiala D (2004) Modelling fire-fighter responses to exercise and asymmetric IR-radiation using a dynamic multi-mode model of human physiology and results from the Sweating Agile thermal Manikin (SAM). Eur J Appl Physiol 92(6):649–653

    Article  CAS  Google Scholar 

  • Rigollier C, Bauer O, Wald L (2000) On the Clear Sky Model of the ESRA - European Solar Radiation Atlas - With Respect to the HELIOSAT Method. Sol Energy 68:33–48

    Article  Google Scholar 

  • Scharmer K, Greif J (ed.) (2000) The European Solar Radiation Atlas, Vol. 2: Database, Models and Exploitation Software, École des Mines de Paris, 1-296, France

  • Schmetz P, Schmetz J, Raschke E (1986) Estimation of daytime downward longwave radiation at the surface from satellite and grid point data. Theor Appl Climatol 37:136–149

    Article  Google Scholar 

  • Skartveit A, Olseth JA, Czeplak G, Rommel M (1996) On the estimation of atmospheric radiation from surface meteorological data. Sol Energy 56:349–359

    Article  CAS  Google Scholar 

  • Skartveit A, Olseth JA, Tuft ME (1998) An hourly diffuse fraction model with correction for variability and surface albedo. Sol Energy 63:173–183

    Article  Google Scholar 

  • Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA contractor report, NASA CR-1855, Washington DC

  • Swinbank WC (1963) Long-wave radiation from clear skies. Q J R Meteorol Soc 89:339–348

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Tanabe SI, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646

    Article  Google Scholar 

  • VDI (1994) VDI guideline 3789 / part 2, Environmental Meteorology, Interactions between Atmosphere and Surfaces. Calculation of Short- and Long-wave Radiation. VDI-Handbuch, Reinhaltung der Luft Band 1, Beuth, Berlin

  • VDI (2008) VDI Guideline 3787 / Part 2: Environmental meteorology: Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level. Part I: Climate. VDI/DIN-Handbuch Reinhaltung der Luft, Band 1 B, Umweltmeteorologie, Beuth, Berlin.

  • Weihs P, Webb AR (1997) Accuracy of spectral UV model calculations - 2. Comparison of UV calculations with measurements. J Geophys Res 102, No. D1.

  • Wild M, Long CN, Ohmura A (2006) Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J Geophys Res 111:D01104. doi:10.1029/2005JD006118

    Article  Google Scholar 

  • Wissler EH (1985) Mathematical simulation of human thermal behaviour using whole body models. In: Shitzer A, Eberhart RC (eds) Heat transfer in medicine and biology - analysis and applications. Plenum, New York, pp 325–373

    Google Scholar 

  • WMO (2003) Manual on the Global Observing System. Volume 1. Global aspects. World Meteorological Organisation No. 544 – Geneva

  • WMO (2008) WMO guide to meteorological instruments and methods of observation. World Meteorological Organisation No. 8 – Geneva

Download references

Ackowledgements

This work was initiated within COST action 730: “Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being”. Through discussions at meetings throughout the years, all participants in COST730 have contributed to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Weihs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weihs, P., Staiger, H., Tinz, B. et al. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int J Biometeorol 56, 537–555 (2012). https://doi.org/10.1007/s00484-011-0416-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0416-7

Keywords

Navigation