Skip to main content
Log in

Major changes in the post-glacial evolution of magmatic compositions and pre-eruptive conditions of Llaima Volcano, Andean Southern Volcanic Zone, Chile

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Llaima is one of the most active volcanoes of the Chilean volcanic front with recent explosive eruptions in 2008 and 2009. Understanding how the volcano evolved to its present state is essential for predictions of its future behavior. The post-glacial succession of explosive volcanic eruptions of Llaima stratovolcano started with two caldera-forming eruptions at ∼16 and ∼15 ka, that emplaced two large-volume basaltic-andesitic ignimbrites (unit I). These are overlain by a series of fall deposits (unit II) changing from basaltic-andesitic to dacitic compositions with time. The prominent compositionally zoned, dacitic to andesitic Llaima pumice (unit III) was formed by a large Plinian eruption at ∼10 ka that produced andesitic surge deposits (unit IV) in its terminal phase. The following unit V represents a time interval of ∼8,000 years during which at least 30 basaltic to andesitic ash and lapilli fall deposits with intercalated volcaniclastic sediments and paleosols were emplaced. Bulk rock, mineral, and glass chemical data constrain stratigraphic changes in magma compositions and pre-eruptive conditions that we interpret in terms of four distinct evolutionary phases. Phase 1 (=unit I) magmas have lower large ion lithophile (LIL)/high field strength (HFS) element ratios compared to younger magmas and thus originated from a mantle source less affected by slab-derived fluids. They differentiated in a reservoir at mid-crustal level. During the post-caldera phase 2 (=units II–IV), relatively long residence times between eruptions allowed for increasingly differentiated magmas to form in a reservoir in the middle crust. Fractional crystallization led to volatile enrichment and oversaturation and is the driving force for the large Plinian eruption of the most evolved (unit III) dacite at Llaima, although replenishment by hot andesite probably triggered the eruption. During the subsequent phase 3 (=unit V >3 ka), frequent mafic replenishments at mid-crustal storage levels favored shorter residence times limiting erupted magma compositions to water-undersaturated basaltic andesites and andesites. At around 3 ka, the magma storage level for phase 4 (=unit V <3 ka to present) shifted to the uppermost crust where the hot magmas partly assimilated the granitic country rock. Although water contents of these basaltic andesites were low, the low-pressure storage facilitated water saturation before eruption. The change in magma storage level at 3 ka was responsible for the dramatic increase in eruption frequency compared to the older Llaima history. We suggest that the change from middle to upper crust magma storage is caused by a change in the stress regime below Llaima from transpression to tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adriasola AC, Thomson SN, Brix MR, Herve F, Stöckhert B (2006) Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°–42°15′S. Int J Earth Sci 95:504–528

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH (1985) New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. EOS Trans Am Geophys Union 66:416 S

    Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Article  Google Scholar 

  • Bachmann O, Deering CD, Ruprecht JS, Huber C, Skopelitis A, Schnyder C (2012) Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: cycles associated with caldera collapse. Contrib Mineral Petrol 163:155–166

    Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Bathke H, Shirzaei M, Walter TR (2011) Inflation and deflation at the steep-sided Llaima stratovolcano (Chile) detected by using InSAR. Geophys Res Lett 38(10), L10304

    Article  Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46:135–167

    Article  Google Scholar 

  • Bertrand S, Sterken M, Vargas-Ramirez L, De Batist M, Vyverman W, Lepoint G, Fagel N (2010) Bulk organic geochemistry of sediments from Puyehue Lake and its watershed (Chile, 40°S): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 294(1–2):56–71

    Article  Google Scholar 

  • Blatter D, Sisson T, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166(3):861–886

    Article  Google Scholar 

  • Bottinga Y, Richet P, Weill DF (1983) Calculation of the density and thermal expansion coefficient of silicate liquids. Bull Mineral 106:129–138

    Google Scholar 

  • Bouvet de Maisonneuve C, Dungan MA, Bachmann O, Burgisser A (2012) Insights into shallow magma storage and crystallization at Volcán Llaima (Andean Southern Volcanic Zone, Chile). J Volcanol Geotherm Res 211:76–91

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Burov E, Jaupart C, Guillou-Frottier L (2003) Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J Geophys Res 108(B4):2177. doi:10.1029/2002JB001904

    Article  Google Scholar 

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1):96–113

    Article  Google Scholar 

  • Cembrano J, Schermer E, Lavenu A, Sanhueza A (2000) Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe–Ofqui fault zone, southern Chilean Andes. Tectonophysics 319:129–149

    Article  Google Scholar 

  • Cognioncle AM, Parmentier EM, Elkins-Tanton LT (2007) Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res 112, B09402. doi:10.1029/2007JB004934

    Google Scholar 

  • Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33:837–840

    Article  Google Scholar 

  • Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcan San Pedro (36°S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J Petrol 45(4):855–881

    Article  Google Scholar 

  • De Vleeschouwer F, Juvigne E, Renson V, Naranjo JA (2005) Mineral chemistry of the Llaima Pumice, Southern Chile: evidence for magma mixing. Geol Belg 8(1–2):135–143

    Google Scholar 

  • Denton GH, Heusser CJ, Lowel TV, Moreno PI, Andersen BG, Heusser LE, Schlühter C, Marchant DR (1999a) Interhemispheric linkage of paleoclimate during the last glaciation. Geogr Ann Ser A Phys Geogr 81(2):107–153

    Article  Google Scholar 

  • Denton GH, Lowell TV, Heusser CJ, Schlüchter C, Andersen BG, Heusser LE, Moreno PI, Marchant DR (1999b) Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue drift in the area of the Southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé, Chile. Geogr Ann Ser A Phys Geogr 81(2):167–229

    Article  Google Scholar 

  • Donaldson CH (1985) The rates of dissolution of olivine, plagioclase, and quartz in a basalt melt. Mineral Mag 49:683–693

    Article  Google Scholar 

  • Drescher H (2012) Magmakammerprozesse im Vorfeld der Eruptionen von 2008 und 2009 des Vulkans Llaima (Südchile). BSc thesis, Christian-Albrechts University, Kiel, p. 78

  • Dufek J, Bachmann O (2010) Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology 38:687–690

    Article  Google Scholar 

  • Dzierma Y, Wehrmann H (2010) Eruption time series statistically examined: probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. J Volcanol Geotherm Res 193(1–2):82–92

    Article  Google Scholar 

  • Eugster HP, Wones DR (1962) Stability relations of the ferruginous biotite, annite. J Petrol 3:82–125

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:1–33

    Article  Google Scholar 

  • Garbe-Schönberg C-D (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newslett 17(1):81–97

    Article  Google Scholar 

  • Gilbert D, Freundt A, Kutterolf S, Burkert C (2012) Post-glacial time series of explosive eruptions and associated changes in the magma plumbing system of Lonquimay volcano, south central Chile. Int J Earth Sci. doi:10.1007/s00531-012-0796-x

    Google Scholar 

  • Govindaraju K (1994) Compilation of working values and sample descriptions for 383 geostandards. Geostand Newslett 18 (Special Issue)

  • Hattori K, Sato H (1996) Magma evolution recorded in plagioclase zoning in 1991 Pinatubo eruption products. Am Mineral 81(7):982–994

    Google Scholar 

  • Head JW, Wilson L (1992) Magma reservoirs and neutral buoyancy zones on Venus: implications for the formation and evolution of volcanic landforms. J Geophys Res 97:3877–3903

    Article  Google Scholar 

  • Hickey-Vargas R, Sun M, López-Escobar L, Moreno-Roa H, Reagan MK, Morris JD, Ryan JG (2002) Multiple subduction components in the mantle wedge: evidence from eruptive centers in the Central Southern Volcanic Zone. Geology 30:199–202

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Am Bull 110(10):1231–1241

    Article  Google Scholar 

  • Hogan JP, Gilbert MC (1995) The A-type Mount Scott granite sheet: importance of crustal magma traps. J Geophys Res 100:15779–15792

    Article  Google Scholar 

  • Hopson CA, Melson WG (1990) Compositional trends and eruptive cycles at Mount St. Helens. Geosci Can 17:131–141

    Google Scholar 

  • Jellinek AM, De Paolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65:363–381

    Article  Google Scholar 

  • Jicha BR, Singer BS, Beard BL, Johnson CM (2005) Contrasting timescales of crystallization and magma storage beneath the Aleutian Island arc. Earth Planet Sci Lett 236:195–210

    Article  Google Scholar 

  • Jicha BR, Singer BS, Beard BL, Johnson CM, Moreno-Roa H, Naranjo JA (2007) Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue-Cordon Caulle, Southern Volcanic Zone, Chile. Earth Planet Sci Lett 255(1–2):229–242

    Article  Google Scholar 

  • Jull M, McKenzie D (1996) The effect of deglaciation on mantle melting beneath Iceland. J Geophys Res 101:21815–21828

    Article  Google Scholar 

  • Kohlstedt DL, Evans B, Mackwell SJ (1995) Strength of the lithosphere: constraints imposed by laboratory experiments. J Geophys Res 100:17587–17602

    Article  Google Scholar 

  • Kutterolf S, Freundt A, Burkert C (2011) Eruptive history and magmatic evolution of the 1.9 kyr Plinian dacitic Chiltepe Tephra from Apoyeque volcano in west-central Nicaragua. Bull Volcanol 73(7):811–831

    Article  Google Scholar 

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94(4):494–506

    Article  Google Scholar 

  • Lara L, Moreno H, Naranjo J, Matthews S, Pérez de Arce C (2006) Magmatic evolution of the Puyehue-Cordón Caulle volcanic complex (40°S), Southern Andean Volcanic Zone: from shield to unusual rhyolitic fissure volcanism. J Volcanol Geotherm Res 157(4):343–366

    Article  Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional- and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691

    Article  Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell Scientific, Oxford, p 193

    Google Scholar 

  • Lepage LD (2003) ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Comput Geosci 29(5):673–678

    Article  Google Scholar 

  • Lindsley DH (1976) The crystal chemistry and structure of the oxide minerals as exemplified by the Fe-Ti oxides. In: Rumble D III (ed) Oxide minerals, vol 3, Rev. Mineral., pp 1–61

    Google Scholar 

  • Lindsley DH, Spencer KJ (1982) Fe-Ti oxide geothermometry: reducing analyses of coexisting Ti-magnetite (Mt) and ilmenite (Ilm). Eos 63:471

    Google Scholar 

  • Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J Geophys Res 96:10049–10077

    Article  Google Scholar 

  • Lohmar S (2008) Petrologia de las Ignimbritas Lican y Pucon (volvan Villarica) y Curacautin (volcan Llaima) en los Andes del sur de Chile. PhD thesis, Universite Blaise Pascal, Clermont-Ferrand, France, pp. 348

  • Lohmar S, Robin C, Parada MA, Gourgaud A, Lopez-Escobar L, Moreno H, Naranjo JA (2005) The two major postglacial (13–14,000 BP) pyroclastic eruptions of Llaima and Villarrica volcanoes (Southern Andes): a comparison. Extended abstract, 6th International Symposium on Andean Geodynamics, Barcelona: 442–445.

  • Lohmar S, Parada MA, Robin C, Gerbe MC, Deniel C, Gourgaud A, Lopez-Escobar L, Moreno H, Naranjo JA (2006) Origin of postglacial ‘mafic’ ignimbrites at Llaima and Villarrica volcanoes (Southern Andes, Chile): assimilation of plutonic rocks as one of the triggering factors? Abstract, Simposio Sudamericano de Geología Isotópica (SSAGI), Punta del Este, Chile

  • Lohmar S, Parada MA, Gutierrez F, Robin C, Gerbe MC (2012) Mineralogical and numerical approaches to establish the pre-eruptive conditions of the mafic Licán Ignimbrite, Villarrica Volcano (Chilean Southern Andes). J Volcanol Geotherm Res 235–236:55–69

    Article  Google Scholar 

  • Lucassen F, Trumbull R, Franz G, Creixell C, Vásquez P, Romer RL, Figueroa O (2004) Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to recent compositional evolution of the Chilean Pacific margin (36-41°S). J South Am Earth Sci 17(2):103–119

    Article  Google Scholar 

  • Lynch HD, Morgan P (1987) The tensile strength of the lithosphere and localization of extension. In: Coward MP, Dewey JF, Hancock PL (eds) Continental extensional tectonics. Geol Soc Spec Publ 28: 53–65

  • McCulloch R, Bentley M, Purves R, Hulton N, Sugden D, Clapperton C (2000) Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J Quat Sci 15(4):409–417

    Article  Google Scholar 

  • Melnick D (2007) Neogene seismotectonics of the south-central Chile margin: subduction-related processes over various temporal and spatial scales. PhD thesis, GeoForschungsZentrum Potsdam Scientific Technical Report STR 07/01. Universität Potsdam, Potsdam, pp. 108

  • Mercer JH (1976) Glacial history of southernmost South America. Quat Res 6(2):125–166

    Article  Google Scholar 

  • Mitrovica JX, Forte AM (2004) A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet Sci Lett 225:177–189

    Article  Google Scholar 

  • Moreno H, Naranjo JA (1989) Llaima volcano: Holocene pyroclastic flow and surge deposits, Southern Andes 38°45′S. Abstract, Continental Magmatism, IAVCEI International Meeting, Santa Fe, U.S.A.

  • Moreno H, Naranjo JA (1991) Síntesis geológica del volcán Llaima, Andes del Sur (38°45′S) e implicancias de riesgos. Abstract, Congreso Geológico Chileno, Vina del Mar, pp. 289–386

  • Morgan DJ, Blake S, Rogers NW, DeVito B, Rolandi G, Macdonald R, Hawkesworth CJ (2004) Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet Sci Lett 222:863–879

    Article  Google Scholar 

  • Naranjo JA, Moreno H (1991) Actividad explosiva postglacial en el volcan Llaima, Andes del Sur (38°45′S). Rev Geol Chile 18:69–80

    Google Scholar 

  • Naranjo JA, Moreno H (2005) Geología del Volcan Llaima, Región de la Araucanía. Carta Geológica de Chile, Serie Geología Basica, No. 88, Servicio Nacional de Geología y Minería de Chile

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Powell R, Powell M (1977) Geothermometry and oxygen barometry using coexisting iron-titanium oxides: a reappraisal. Mineral Mag 41(318):257–263

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley FJ III (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69: 61–120

  • Reches Z, Fink J (1988) The mechanism of intrusion of the Inyo dike, Long Valley Caldera, California. J Geophys Res 93:4321–4334

    Article  Google Scholar 

  • Reubi O, Bourdon B, Dungan MA, Koornneef JM, Selles D, Langmuir CH, Aciego S (2011) Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcan Llaima, Chile. Earth Planet Sci Lett 303(1–2):37–47

    Article  Google Scholar 

  • Rhodes JM, Dungan MA, Blanchard DP, Long PE (1979) Magma mixing at mid-ocean ridges: evidence from basalts drilled near 22°N on the Mid-Atlantic Ridge. Tectonophysics 55:36–61

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Roche O, Druitt TH (2001) Onset of caldera collapse during ignimbrite eruptions. Earth Planet Sci Lett 191:191–202

    Article  Google Scholar 

  • Ryan MP (1987) Neutral buoyancy and the mechanical evolution of magmatic systems. In: BO Mysen (eds) Magmatic processes: physicochemical principles. The Geochemical Society, Spec Publ 1: 259–287

  • Selles D, Rodriguez AC, Dungan MA, Naranjo JA, Gardeweg M (2004) Geochemistry of Nevado de Longaví Volcano (36.2°S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Rev Geol Chile 31:293–315

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166

    Article  Google Scholar 

  • Smith VC, Shane P, Nairn IA (2005) Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 148:372–406

    Article  Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201

    Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31(2):161–206

    Article  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Tassara A, Yáñez G (2003) Relación entre el espesor elástico de la litosfera y la segmentación tectónica del margen andino (15-47° S). Rev Geol Chile 30(2):159–186

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. 2nd edition, Cambridge University Press: pp. 456

  • Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261(1):201–216

    Article  Google Scholar 

  • Vigneresse JL, Tikoff B, Ameglio L (1999) Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics 302:203–224

    Article  Google Scholar 

  • Völker D, Kutterolf S, Wehrmann H (2011) Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes between 33°S and 46°S. J Volcanol Geotherm Res 205(3–4):114–129

    Article  Google Scholar 

  • Watanabe T, Koyaguchi T, Seno T (1999) Tectonic stress controls on ascent and emplacement of magmas. J Volcanol Geotherm Res 91:65–78

    Article  Google Scholar 

  • Weinrebe W, Flueh E, Hasert M, Behrmann J, Völker D, Geersen J, Ranero C, Diaz-Naveas J (2011) 16 years, 16 cruises, 1.6 billion Soundings: a compilation of high-resolution multibeam bathymetry of the active plate boundary along the Chilean continental margin. Abstract OS24A-06, AGU Fall Meeting, San Francisco, USA

  • Zellmer GF, Turner S, Hawkesworth CJ (2000) Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth Planet Sci Lett 174:265–281

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Strehlow and S. Eisele for assistance during field work. L. Lara at the Chilean Geological Survey (SERNAGEOMIN) provided valuable information. We thank S. Jung (Hamburg University), D. Garbe-Schönberg (Kiel University), and M. Thöner (GEOMAR) for providing XRF, ICPMS, and EMP geochemical analyses. Thorough reviews by O. Bachmann, D. Selles, and an anonymous reviewer as well as detailed comments by the editor D.W. Peate greatly helped to improve this paper. This publication is contribution no. 271 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Schindlbeck.

Additional information

Editorial responsibility: D.W. Peate

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Lithologic profile of unit II. (GIF 150 kb)

High Resolution Image (TIFF 873 kb)

Fig. S2

Lithologic profile of units III and IV. (GIF 372 kb)

High Resolution Image (TIFF 1651 kb)

Fig. S3a

Lithologic profile of (a) lower and (b) upper part of unit V. (GIF 521 kb)

(GIF 598 kb)

High Resolution Image (TIFF 2724 kb)

High Resolution Image (TIFF 2889 kb)

Fig. S4

Comparisons of thermobarometric results from different approaches. Dashed lines allow for ±50°C deviations from the solid 1:1 line. Symbols as in Fig. 5. (GIF 23 kb)

High Resolution Image (EPS 1752 kb)

Fig. S5

Melt H2O contents derived from plag-liquid equilibria versus bulk-rock Zr contents of the respective samples. (a) Hygrometer of Putirka (2008), (b) hygrometer of Lange et al. (2009). (GIF 9 kb)

High Resolution Image (EPS 993 kb)

Fig. S6

(a) Fe-Ti-oxide classification diagram after Lindsley (1976). (b) Oxygen fugacity log f(O2) versus temperature diagram with HM, NNO and FMQ buffers from Eugster and Wones (1962) and Buddington and Lindsley (1964). Filled symbols are data from magnetite-ilmenite equilibria, unfilled symbols for unit III dacite from amphibole compositions. (GIF 21 kb)

High Resolution Image (EPS 1460 kb)

ESM_1

Outcrop locations and sample list (XLSX 17 kb)

ESM_2

XRF major and trace element bulk-rock data (XLSX 55 kb)

ESM_3

ICPMS trace element bulk-rock data (XLSX 99 kb)

ESM_4

XRF and ICPMS standard measurements (XLSX 171 kb)

ESM_5

EMP major element glass data (XLSX 9 kb)

ESM_6

EMP major element mineral data (XLSX 41 kb)

ESM_7

Age data 14C-dating (XLSX 13 kb)

ESM_8

Temperature, pressure, water content and oxygen fugacity (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindlbeck, J.C., Freundt, A. & Kutterolf, S. Major changes in the post-glacial evolution of magmatic compositions and pre-eruptive conditions of Llaima Volcano, Andean Southern Volcanic Zone, Chile. Bull Volcanol 76, 830 (2014). https://doi.org/10.1007/s00445-014-0830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0830-x

Keywords

Navigation