Skip to main content
Log in

Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems

  • Plant Animal Interactions
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Stable isotope signatures of primary producers display high inter- and intraspecific variation. This is assigned to species-specific differences in isotope fractionation and variable abiotic conditions, e.g., temperature, and nutrient and light availability. As consumers reflect the isotopic signature of their food source, such variations have direct impacts on the ecological interpretation of stable isotope data. To elucidate the variability of isotope fractionation at the primary producer level and the transfer of the signal through food webs, we used a standardised marine tri-trophic system in which the primary producers were manipulated while the two consumer levels were kept constant. These manipulations were (1) different algal species grown under identical conditions to address interspecific variability and (2) a single algal species cultivated under different nutrient regimes to address nutrient-dependent variability. Our experiments resulted in strong interspecific variation between different algal species (Thalassiosira weissflogii, Dunaliella salina, and Rhodomonas salina) and nutrient-dependent shifts in stable isotope signatures in response to nutrient limitation of R. salina. The trophic enrichment in 15N and 13C of primary and secondary consumers (nauplii of Acartia tonsa and larval herring) showed strong deviations from the postulated degree of 1.0‰ enrichment in δ13C and 3.4‰ enrichment in δ15N. Surprisingly, nauplii of A. tonsa tended to keep “isotopic homeostasis” in terms of δ15N, a pattern not described in the literature so far. Our results suggest that the diets’ nutritional composition and food quality as well as the stoichiometric needs of consumers significantly affect the degree of trophic enrichment and that these mechanisms must be considered in ecological studies, especially when lower trophic levels, where variability is highest, are concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aberle N, Hillebrand H, Grey J, Wiltshire KH (2005) Selectivity and competitive interactions between two benthic invertebrate grazers (Asellus aquaticus and Potamopyrgus antipodarum): an experimental study using 13C- and 15N-labelled diatoms. Freshw Biol 50:369–379

    Article  Google Scholar 

  • Adams TS, Sterner RW (2000) The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol Oceanogr 3:601–607

    Article  Google Scholar 

  • Burkhardt S, Riebesell U, Zondervan I (1999) Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochim Cosmochim Acta 63:3729–3741

    Article  CAS  Google Scholar 

  • Focken U, Becker K (1998) Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food web using δ13C data. Oecologia 115:337–343

    Article  Google Scholar 

  • Fry B (1996) 13C/12C fractionation by marine diatoms. Mar Ecol Prog Ser 134:283–294

    Article  CAS  Google Scholar 

  • Fry B, Wainright SC (1991) Diatom sources of 13C-rich carbon in marine food webs. Mar Ecol Prog Ser 76:149–157

    Article  Google Scholar 

  • Gannes L, O’Brien D, Martinez del Rio C (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271–1279

    Google Scholar 

  • Gaye-Siessegger J, Focken U, Muetzel S, Abel H, Becker K (2004) Feeding level and individual metabolic rate affect δ13C and δ15N values in carp: implications for food web studies. Oecologia 138:175–183

    Article  PubMed  Google Scholar 

  • Gervais F (1997) Light-dependent growth, dark survival, and glucose uptake by cryptophytes isolated from a freshwater chemocline. J Phycol 33:18–25

    Article  CAS  Google Scholar 

  • Goedkoop W, Akerblom N, Demandt MH (2006) Trophic fractionation of carbon and nitrogen stable isotopes in Chironomus riparius reared on food of aquatic and terrestrial origin. Freshw Biol 51:878–886

    Article  CAS  Google Scholar 

  • Gorokhova E, Hansson S (1999) An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fish Aquat Sci 56:2203–2210

    Article  Google Scholar 

  • Grey J, Jones RG, Sleep D (2000) Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123:232–240

    Article  Google Scholar 

  • Guillard RL, Ryther J (1962) Studies of marine planktonic diatoms. Can J Microbiol 8:229–239

    PubMed  CAS  Google Scholar 

  • Haubert D, Langel R, Scheu S, Ruess L (2005) Effects of food quality, starvation and life stage on stable isotope fractionation in Collembola. Pedobiologia 49:229–237

    Article  CAS  Google Scholar 

  • Herzka S, Holt G (2000) Changes in isotope composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies. Can J Fish Aquat Sci 57:137–147

    Article  Google Scholar 

  • Hesslein RH, Hallard KA, Ramlal P (1993) Replacement of sulfur, carbon and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by delta 34S, 13C, and 15N. Can J Fish Aquat Sci 50:2071–2076

    Article  CAS  Google Scholar 

  • Klein Breteler WCM, Grice K, Schouten S, Kloosterhuis HT, Damste JSS (2002) Stable carbon isotope fractionation in the marine copepod Temora longicornis: unexpectedly low 13C value of faecal pellets. Mar Ecol Prog Ser 240:195–204

    Article  CAS  Google Scholar 

  • Macko SA, Estep MLF, Lee WY (1983) Stable hydrogen isotope analysis of food webs on laboratory and field populations of marine amphipods. J Exp Mar Biol Ecol 72:243–250

    Article  CAS  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Academic Press, San Diego, p 710

    Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Montoya JP, McCarthy JJ (1995) Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J Plankton Res 17:439–464

    Article  CAS  Google Scholar 

  • Needoba J, Waser N, Harrison P, Calvert S (2003) Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Mar Ecol Prog Ser 255:81–91

    Article  CAS  Google Scholar 

  • Oelbermann K, Scheu S (2002) Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia 130:337–344

    Article  Google Scholar 

  • Olive PJW, Pinnegar JK, Polunin NVC, Richards G, Welch R (2003) Isotope trophic-step fractionation: a dynamic equilibrium model. J Anim Ecol 72:608–617

    Article  Google Scholar 

  • Peterson B, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Ponsard S, Arditi R (2000) What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81:852–864

    Google Scholar 

  • Ponsard S, Averbuch P (1999) Should growing and adult animals fed on the same diet show different δ15N values? Rapid Commun Mass Spectr 13:1305–1310

    Article  CAS  Google Scholar 

  • Post D (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Santer B, Sommerwerk N, Grey J (2006) Food niches of cyclopoid copepods in eutrophic Plußsee determined by stable isotope analysis. Arch Hydrobiol 167:301–316

    Article  CAS  Google Scholar 

  • Schlechtriem C, Focken U, Becker K (2004) Stable isotopes as a tool for nutrient assimilation studies in larval fish feeding on live food. Aquat Ecology 38:93–100

    Article  CAS  Google Scholar 

  • Tamelander T, Soreide JE, Hop H, Carroll ML (2006) Fractionation of stable isotopes in the Arctic marine copepod Calanus glacialis: effects on the isotopic composition of marine particulate organic matter. J Exp Mar Biol Ecol 333:231–240

    Article  CAS  Google Scholar 

  • Vander Zanden M, Rasmussen J (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066

    Google Scholar 

  • Vanderklift M, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Vuorio K, Meili M, Sarvala J (2006) Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshw Biol 51:807–822

    Article  CAS  Google Scholar 

  • Waser NAD, Harrison PJ, Nielsen B, Calvert SE, Turpin DH (1998) Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnol Oceanogr 43:215–224

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Thomas Hansen for conducting the stable isotope analyses and for the fruitful discussions on stable isotope data in general. Christoph Petereit is thanked for the great collaboration and the sharing of facilities during the experiments. The helpful comments and linguistic improvements of Alexandra Kraberg are gratefully acknowledged. This study was part of the DFG-project FRISCA (AB 289/1-1) and the Helgoland Foodweb Project; we are grateful for the funding. This study complies with the current German law.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jörg Ganzhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aberle, N., Malzahn, A.M. Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems. Oecologia 154, 291–303 (2007). https://doi.org/10.1007/s00442-007-0829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0829-5

Keywords

Navigation