Skip to main content
Log in

Dynamic interface behaviour of a bi-material poroelastic cracked plate

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The interface fracture behaviour of a bi-material poroelastic plate with normal to the interface surface-breaking pre-crack with crack-tip approaching the interface subjected to time-harmonic uniaxial uniform load is considered. A viscoelastic isomorphism to Biot’s dynamic poroelasticity is applied to describe the soil material properties, thus replacing the original two-phase poroelastic material by a single-phase viscoelastic one of Kelvin–Voigt type. A viscoelastic shear-lag model for one-dimensional stress–strain state with analytically derived solution for the length of the delamination zone along the interface is proposed. The parametric analysis demonstrates that the debonding length is sensitive to the following key factors: (a) frequency and magnitude of the applied load; (b) material and geometric characteristics; (c) soil porosity as respected soil type; and (d) soil saturation—dry or saturated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hudson, J.A., Stephansson, D., Andersson, J., Tsang, C.F., Jing, L.: Coupled T–H–M issues relating to radioactive waste repository design and performance. Int. J. Rock Mech. Min. Sci. 38(1), 143–161 (2001)

    Article  Google Scholar 

  2. Selavdurai, A.P.S., Nguen, T.S.: Scoping analysis of the coupled thermal–hydrological–mechanical behavior of the rock mass around a nuclear fuel waste repository. Eng. Geol. 47(4), 379–400 (1996)

    Article  Google Scholar 

  3. Stephenson, D., Jinh, L., Tsang, C.F.: Coupled Thermo-Hydro-Mechanical Processes of Fractured Media. Elsevier, Rotterdam (1996)

    Google Scholar 

  4. Tsang, C.F.: Coupled Processes Associated with Nuclear Waste Repositories. Academic Press, New York (1987)

    Google Scholar 

  5. Gutierrez, M., Makurat, A.: Coupled THM modeling of cold water injection in fracture hydrocarbon reservoirs. Int. J. Rock Mech. Min. Sci. 34((3/4)), 429–429 (1997)

    Article  Google Scholar 

  6. Jing, Z., Watanabe, K., Willids-Richards, J., Hashida, T.: 3D water/rock chemical interaction model for prediction of HDR/HWR geothermal reservoir performance. Geothermics 31(1), 1–28 (2002)

    Article  Google Scholar 

  7. Ran, Q., Gu, X.: A three-dimensional elasto-plastic finite element model for predicting dynamically reservoir effective stress. J. Geomech. 3(3), 33–40 (1997a)

    MathSciNet  Google Scholar 

  8. Ran, Q., Li, S.: Dynamic parameter models of coupled fluid–solid effects for oil reservoir simulations. Pet. Explor. Dev. 34(3), 61–65 (1997b)

    Google Scholar 

  9. Foster, M., Fell, R., Spannagle, M.: The statistics of embankment dam failures and accidents. Can. Geotech. J. 37(5), 1000–1024 (2000)

    Article  Google Scholar 

  10. Omidi, G.H., Thomas, J.C., Brown, K.W.: Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner. Water Air Soil Pollut. 89(1–2), 91–103 (1996)

    Article  Google Scholar 

  11. Lai, Y.M., Wu, Z.W., Zhu, Y.L., Zhu, L.N.: Non-linear analysis for the coupled problem of temperature, seepage and stress fields in cold-region tunnels. Tunn. Undergr. Space Technol. 13(4), 435–440 (1998)

    Article  Google Scholar 

  12. Goldman, L.J., Greenfield, L.I., Damle, A.S., Kingsbury, G.L., Northeim, C.M., Truesdale, R.S.: Clay liners for waste management facilities—design, construction and evaluation. Pollution Technology Review, 178, Noyes Data Corporation, Park Ridge, New Jersey, USA (2009)

  13. Fang, H.Y.: Introduction to Environmental Geotechnology. CRC Press, Boca Raton (1997)

    Google Scholar 

  14. Banaszak, J., Kowalski, S.J.: Drying induced stresses estimated on the base of elastic and viscoelastic models. Chem. Eng. J. 86(1–2), 139–143 (2002)

    Article  Google Scholar 

  15. Kowalski, S.J.: Modelling of fracture phenomena in dried materials. Chem. Eng. Sci. 86, 145–151 (2002)

    Article  Google Scholar 

  16. Kowalski, S.J.: Thermomechanics of Drying Processes. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  17. Kowalski, S.J., Banaszak, J., Rybicki, A.: Plasticity in materials exposed to drying. Chem. Eng. Sci. 65, 5105–5116 (2010)

    Article  Google Scholar 

  18. Sherer, G.W.: Theory of drying. J. Am. Ceram. Soc. 73(1), 3–14 (1990)

    Article  Google Scholar 

  19. Shin, H., Santamarina, J.C.: Desiccation cracks in saturated fine-grained soils: particle-level phenomena and effective-stress analysis. Geotechnique 61(11), 961–972 (2011)

    Article  Google Scholar 

  20. Volkersen, O.: Die Nietkraft Verteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtforschung 15, 41–47 (1938)

    Google Scholar 

  21. Cox, L.H.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)

    Article  Google Scholar 

  22. Nayfeh, A.H.: Thermo-mechanically induced interfacial stresses in fibrous composites. Fibre Sci. Technol. 10, 195–209 (1977)

    Article  Google Scholar 

  23. Nairn, J.A.: Fracture mechanics of unidirectional composites using the shear-lag model I: theory. J. Compos. Mater. 22, 561–588 (1988)

    Article  Google Scholar 

  24. Xia, Z., Okabe, T., Curtin, W.A.: Shear-lag versus finite element models for stress transfer in fiber-reinforced composites. Compos. Sci. Technol. 62, 1141–1149 (2002)

    Article  Google Scholar 

  25. Mróz, Z., Mróz, K.P.: Analysis of delamination and damage growth in joined bi-layer systems. Geomech. Energy Environ. 4, 4–28 (2015)

    Article  Google Scholar 

  26. Nikolova, G., Ivanova, J.: Cracked bi-material plates under thermomechanical loading. Key Eng. Mater. 409, 406–413 (2009)

    Article  Google Scholar 

  27. Ivanova, J., Nikolova, G., Dineva, P., Becker, W.: Interface behaviour of a bi-material plate under dynamic loading. J. Eng. Mech. ASCE 136(10), 1194–1201 (2010)

    Article  Google Scholar 

  28. Ivanova, J., Nikolova, G., Becker, Gambin B.: Interface behaviour of a bi-material plate under dynamic loading. Cohesive interface debonding. ZAMM 95(11), 1190–1201 (2010)

    Article  MATH  Google Scholar 

  29. Ivanova, J., Nikolova, G., Gambin, B.: Interface delamination of bi-material structure under dynamic time harmonic loading. ZAMM 91(2), 146–154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gambin, B., Ivanova, J., Valeva, V., Nikolova, G.: Pre-cracking and interface delamination in bi-material structure. Static and dynamic loading. Acta Mech. Sin. 27(1), 80–89 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ivanova, J., Nikolova, G., Gambin, B.: Interface delamination of bi-material structure under time harmonic load. Cohesive behaviour of the interface. ZAMM 92(1), 41–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ivanova, J., Nikolova, G., Becker, W., Gambin, B.: Interface behavior of a bi-material plate under dynamic loading. Cohesive interface debonding. ZAMM 95(11), 1190–1201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I: low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  MathSciNet  Google Scholar 

  34. Bardet, J.P.: A viscoelastic model for the dynamic behaviour of saturated poroelastic soils. Trans. ASME 59, 128–135 (1992)

    Article  MATH  Google Scholar 

  35. Lin, C.H., Lee, V.W., Trifunac, M.D.: The reflection of plane waves in a poroelastic half-space saturated with inviscid fluid. Soil Dyn. Earthq. Eng. 25, 205–223 (2005)

    Article  Google Scholar 

  36. Morochnik, V., Bardet, J.P.: Viscoelastic approximation of poroelastic media for wave scattering problems. Soil Dyn. Earthq. Eng. 15, 337–346 (1996)

    Article  Google Scholar 

  37. Hutchinson, J.W., Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1991)

    Article  MATH  Google Scholar 

  38. Lemaitre, J.: A Course on Damage Mechanics, vol. XIX, p. 228. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  39. Barton, N.: Shear strength criteria for rock, rock joints, rock fill and rock masses: problems and some solutions. J. Rock Mech. Geotech. Eng. 5, 249–261 (2013)

    Article  Google Scholar 

  40. Kapang, P.: Shear strength of fracture in sandstone under true triaxial stresses. Master Thesis, Suranaree University of Technology, http://sutir.sut.ac.th:8080/sutir/bitstream/123456789/4111/2/fulltext.pdf (2012)

  41. Mavko, G., Mukerji, T., Dvorkin, J.: The Rock Physics Handbook. Cambridge University Press, New York (1998)

    Google Scholar 

  42. Lemaitre, J., Desmorat, R., Vidonne, M.P., Zhang, P.: Reinitiation of a crack reaching an interface. Int. J. Fract. 80, 257–276 (1996)

    Article  Google Scholar 

  43. Song, G.M., Sloof, W.G., Pei, Y.T., De Hosson, J.Th.M.: Interface fracture behavior of zinc coatings on steel: experiments and finite element calculations. Surf. Coat. Technol. 201, 4311–4316 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergana Nikolova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolova, G., Ivanova, J., Wuttke, F. et al. Dynamic interface behaviour of a bi-material poroelastic cracked plate. Arch Appl Mech 87, 1199–1211 (2017). https://doi.org/10.1007/s00419-017-1241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1241-1

Keywords

Navigation