Skip to main content
Log in

Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The islands of the Azores archipelago emerge from an oceanic plateau built on lithosphere increasing in age with distance from the Mid-Atlantic Ridge from 10 to 45 Ma. Here, we present the first comprehensive major and trace element and Sr–Nd–Pb isotope data from Santa Maria, the easternmost island of the archipelago, along with published data from the other Azores islands situated much closer to the Mid-Atlantic Ridge axis. We can show that the distinctively more variable and more enriched trace element ratios at Santa Maria combined with a relatively small range in Sr–Nd–Pb isotope ratios are the result of low degrees of partial melting of a common Azores mantle plume source underneath thicker lithosphere. This implies that melt extraction processes and melting dynamics may be able to better preserve the trace element mantle source variability underneath thicker lithosphere. These conclusions may apply widely for oceanic melts erupted on relatively thick lithosphere. In addition, lower Ti/Sm and K/La ratios and SiO2 contents of Santa Maria lavas imply melting of a carbonated peridotite source. Mixing of variable portions of deep small-degree carbonated peridotite melts and shallow volatile-free garnet peridotite could explain the geochemical variability underneath Santa Maria in agreement with the volatile-rich nature of the Azores mantle source. However, Santa Maria is the Azores island where the CO2-rich nature of the mantle source is more evident, reflecting a combination of a smaller extent of partial melting and the positioning at the edge of the tilted Azores mantle plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel Monem AA, Fernandez LA, Boone GM (1975) K-Ar-Ages from the eastern Azores group (Santa Maria, Sao Miguel and the Formigas islands). Lithos 8:247–254

    Article  Google Scholar 

  • Abouchami W, Galer SJG, Hofmann AW (2000) High precision lead isotope systematics of lavas from the Hawaiian scientific drilling project. Chem Geol 169:187–209

    Article  Google Scholar 

  • Allègre CJ, Turcotte DL (1986) Implications of a two component marble-cake mantle. Nature 323:123–127

    Article  Google Scholar 

  • Anderson MC, Flower MFJ (1982) Petrology and geochemistry of lavas from Santa Maria, Azores; a preliminary study of mantle heterogeneity. 16th annual meeting; North-Central Section. Geol Soc Am 14(5):153

    Google Scholar 

  • Asimow PD, Dixon JE, Langmuir CH (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosyst 5(1):Q01E16

    Article  Google Scholar 

  • Beier C, Haase KM, Hansteen TH (2006) Magma evolution of the Sete Cidades volcano, São Miguel, Azores. J Petrol 47(7):1375–1411

    Article  Google Scholar 

  • Beier C, Stracke A, Haase KM (2007) The peculiar geochemical signatures of São Miguel lavas: metasomatised or recycled mantle sources? Earth Planet Sci Lett 259(1–2):186–199

    Article  Google Scholar 

  • Beier C, Haase KM, Abouchami W, Krienitz M-S, Hauff F (2008) Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochem Geophys Geosyst 9(12):Q12013

    Article  Google Scholar 

  • Beier C, Turner SP, Plank T, White W (2010) A preliminary assessment of the symmetry of source composition and melting dynamics across the Azores plume. Geochem Geophys Geosyst 11(1):Q02004

    Google Scholar 

  • Beier C, Vanderkluysen L, Regelous M, Mahoney JJ, Garbe-Schönberg D (2011) Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochem Geophys Geosyst 12:Q0AM01

    Article  Google Scholar 

  • Beier C, Haase KM, Turner SP (2012) Conditions of melting beneath the Azores. Lithos 144–145:1–11

    Article  Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Article  Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160(3–4):493–504

    Article  Google Scholar 

  • Bourdon B, Langmuir CH, Zindler A (1996) Ridge-hotspot interaction along the Mid-Atlantic Ridge between 37°30′ and 40°30′N: the U-Th disequilibrium evidence. Earth Planet Sci Lett 142:175–189

    Article  Google Scholar 

  • Bourdon B, Turner SP, Ribe NM (2005) Partial melting and upwelling rates beneath the Azores from U-series isotope perspective. Earth Planet Sci Lett 239(1–2):42–56

    Article  Google Scholar 

  • Brandl PA, Beier C, Regelous M, Abouchami W, Haase KM, Garbe-Schönberg D, Galer SJG (2012) Volcanism on the flanks of the East Pacific Rise: quantitative constraints on mantle heterogeneity and melting processes. Chem Geol 289–299(3–4):41–56

    Article  Google Scholar 

  • Brey G, Green DH (1977) Systematic study of liquidus phase relations in olivine melilitite + H2O + CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contrib Mineral Petrol 61(2):141–162

    Article  Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10(10):516–519

    Article  Google Scholar 

  • Cannat M, Briais A, Deplus C, Escartín J, Georgen J, Lin J, Mercouriev S, Meyzen C, Muller M, Pouliquen G, Rabain A, Silva Pd (1999) Mid-Atlantic Ridge—Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago. Earth Planet Sci Lett 173:257–269

    Article  Google Scholar 

  • Class C, Goldstein SL (1997) Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet Sci Lett 150:245–260

    Article  Google Scholar 

  • Class C, Goldstein SL, Altherr R, Bachèlery P (1998) The process of Plume-Lithosphere Interactions in the Ocean Basins-the Case of Grande Comore. J Petrol 39(5):881–903

    Article  Google Scholar 

  • Collerson KD, Williams Q, Ewart AE, Murphy DT (2010) Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: the role of CO2-fluxed lower mantle melting in thermochemical upwellings. Phys Earth Planet Inter 181:112–131

    Article  Google Scholar 

  • Coltice N, Simon L, Lécuyer C (2004) Carbon isotope cycle and mantle structure. Geophys Res Lett 31(5):L05603

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236(1–2):524–541

    Article  Google Scholar 

  • Courtier AM, Jackson MG, Lawrence JF, Wang Z, Lee C-TA, Halama R, Warren JM, Workman R, Xu W, Hirschmann MM, Larson AM, Hart SR, Lithgow-Bertelloni C, Stixrude L, Chen W-P (2007) Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth Planet Sci Lett 264(1–2):308–316

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440:659–662

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298(1–2):1–13

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated Ocean Island Lavas. J. Pet. 47(4):647–671

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island Basalts. J Petrol 48(11):2093–2124

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, McDonough WF, Spiegelman M, Withers AC (2009) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem Geol 262(1–2):57–77

    Article  Google Scholar 

  • Davis FA, Hirschmann MM, Humayun M (2011) The composition of the incipient partial melt of garnet peridotite at 3GPa and the origin of OIB. Earth Planet Sci Lett 308(3–4):380–390

    Article  Google Scholar 

  • Davies GF (1988) Ocean bathymetry and mantle convection; 1. Large-scale flow and hotspots. J Geophys Res B93(9):10467–10480

    Article  Google Scholar 

  • Dupré B, Allègre CJ (1983) Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303(5913):142–146

    Article  Google Scholar 

  • Elkins LJ, Gaetani GA, Sims KWW (2008) Partitioning of U and Th during garnet pyroxenite partial melting: constraints on the source of alkaline ocean island basalts. Earth Planet Sci Lett 265(1–2):270–286

    Article  Google Scholar 

  • Elliott T, Blichert-Toft J, Heumann A, Koetsier G, Forjaz V (2007) The origin of enriched mantle beneath Sao Miguel, Azores. Geochim Cosmochim Acta 71(1):219–240

    Article  Google Scholar 

  • Escartín J, Cannat M, Pouliquen G, Rabain A (2001) Crustal thickness of V-shaped ridges south of the Azores: Interaction of the Mid-Atlantic Ridge (36°-39°N) and the Azores hot spot. J. Geophys. Res. 106(10):21,719 - 721,735

    Google Scholar 

  • Esenwein P (1929) Zur Petrographie der Azoren. Zeitschrift für Vulkanologie 3(12):128–227

    Google Scholar 

  • Féraud G, Kaneoka I, Allègre CJ (1980) K/Ar Ages and stress pattern in the Azores: geodynamic implications. Earth Planet Sci Lett 46:275–286

    Article  Google Scholar 

  • Féraud G, Schmincke H-U, Lietz J, Gastaud J, Pritchard G, Bleil U (1981) New K-Ar ages, chemical analyses and magnetic data of rocks from the islands of Santa Maria (Azores), Porto Santo and Madeira (Madeira Archipelago) and Gran Canaria (Canary Islands). Bull Volcanol 44:359–375

    Article  Google Scholar 

  • Fernandes RMS, Bastos L, Miranda JM, Lourenco N, Ambrosius BAC, Noomen R, Simons W (2006) Defining the plate boundaries in the Azores region. J Volcanol Geotherm Res 156(1–2):1–9

    Article  Google Scholar 

  • Galer SJG, Abouchami W (1998) Practical application of lead triple spiking for correction of instrumental mass discrimination. Mineral Mag 62A:491–492

    Article  Google Scholar 

  • Garbe-Schönberg C-D (1993) Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS. Geostand Newslett 17:81–97

    Article  Google Scholar 

  • Gente P, Dyment J, Maia M, Goslin J (2003) Interaction between the Mid-Atlantic Ridge and the Azores hotspot during the last 85 Myr: emplacement and rifting of the hot spot-derived plateaus. Geochem Geophys Geosyst 4(10):Q8514

    Article  Google Scholar 

  • Gerbode C, Dasgupta R (2010) Carbonate-fluxed Melting of MORB-like Pyroxenite at 2.9GPa and Genesis of HIMU Ocean Island Basalts. J Petrol 51(10):2067–2088

    Article  Google Scholar 

  • Grose CJ (2012) Properties of oceanic lithosphere revised plate cooling model predictions. Earth Planet Sci Lett 333–334:250–264

    Article  Google Scholar 

  • Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46(8):1645–1659

    Article  Google Scholar 

  • Gurenko AA, Chaussidon M, Schmincke H-U (2001) Magma ascent and contamination beneath one intraplate volcano: evidence from S and O isotopes in glass inclusions and their host clinopyroxenes from Miocene basaltic hyaloclastites southwest of Gran Canaria (Canary Islands). Geochim Cosmochim Acta 65(23):4359–4374

    Article  Google Scholar 

  • Haase KM (1996) The relationship between the age of the lithosphere and the composition of oceanic magmas: constraints on partial melting, mantle sources and the thermal structure of the plates. Earth Planet Sci Lett 144:75–92

    Article  Google Scholar 

  • Haase KM, Beier C (2003) Tectonic control of ocean island basalt sources on Sao Miguel, Azores? Geophys Res Lett 30(16):1856

    Article  Google Scholar 

  • Halliday AN, Lee D-C, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395

    Article  Google Scholar 

  • Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28(3):283–285

    Article  Google Scholar 

  • Hansteen TH, Troll VR (2003) Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands); consequences for crustal contamination of ascending magmas. Chem Geol 193(3–4):181–193

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    Article  Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment; isotopic evidence. Science 256(5056):517–520

    Article  Google Scholar 

  • Hauri EH, Hart SR (1993) Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the South Pacific Ocean. Earth Planet Sci Lett 114(2–3):353–371

    Article  Google Scholar 

  • Herzberg C (2011) Geodynamic Information in Peridotite Petrology. J. Pet. 45(12):2507–2530

    Article  Google Scholar 

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosyst 9:Q09001

    Article  Google Scholar 

  • Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124(2):185–208

    Article  Google Scholar 

  • Hoernle K, Tilton G, Le Bas MJ, Duggen S, Garbe-Schönberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol 142:520–542

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson RW (ed) Treatise on geochemistry, vol 2. The mantle and core, vol 2. Elsevier, Amsterdam, pp 61–101

    Google Scholar 

  • Hofmann AW, Farnetani CG, Spiegelman M, Class C (2011) Displaced helium and carbon in the Hawaiian plume. Earth Planet Sci Lett 312(1–2):226–236

    Article  Google Scholar 

  • Humphreys ER, Niu Y (2009) On the composition of ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112(1–2):118–136

    Article  Google Scholar 

  • Hunter RH, McKenzie D (1989) The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth Planet Sci Lett 92:347–356

    Article  Google Scholar 

  • Ito G, Mahoney JJ (2005) Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet Sci Lett 230:29–46

    Article  Google Scholar 

  • Jambon A, Déruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117

    Article  Google Scholar 

  • Jean-Baptiste P, Allard P, Coutinho R, Ferreira T, Fourré E, Queiroz G, Gaspar JL (2009) Helium isotopes in hydrothermal volcanic fluids of the Azores archipelago. Earth Planet Sci Lett 281(1–2):70–80

    Article  Google Scholar 

  • Johnson CL, Wijbrans JR, Constable CG, Gee J, Staudigel H, Tauxe L, Forjaz V-H, Salgueiro M (1998) 40Ar/39Ar ages and paleomagnetism of Sao Miguel lavas, Azores. Earth Planet Sci Lett 116(3–4):637–649

    Article  Google Scholar 

  • Kelemen PB, Dunn JT (1992) Depletion of Nb relative to other highly incompatible elements by melt/rock reaction in the upper mantle. EOS Trans AGU 73:656–657

    Google Scholar 

  • Kent AJR, Norman MD, Hutcheon ID, Stolper EM (1999) Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem Geol 156(1–4):299–319

    Article  Google Scholar 

  • Kerrick DM, Connolly J (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411:293–296

    Article  Google Scholar 

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res B Solid Earth Planets 92(8):8089–8115

    Article  Google Scholar 

  • Kogarko L, Kurat G, Ntaflos T (2001) Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island. Brazil. Contrib. Mineral. Petr. 140:577–587

    Article  Google Scholar 

  • Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450(7171):866–869

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135(1–4):13–30

    Article  Google Scholar 

  • Le Roux V, Lee CTA, Turner SJ (2010) Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim Cosmochim Acta 74(9):2779–2796

    Article  Google Scholar 

  • Le Roux V, Dasgupta R, Lee C-TA (2011) Mineralogical heterogeneities in the Earth’s mantle: Constraints from Mn, Co., Ni and Zn partitioning during partial melting. Earth Planet Sci Lett 307(3–4):395–408

    Article  Google Scholar 

  • Lee C-TA, Leeman WP, Canil D, Li Z-X (2005) Similar V/Sc systematics in MORB and Arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46(11):2313–2336

    Article  Google Scholar 

  • Lee C-TA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279(1–2):20–33

    Article  Google Scholar 

  • Lee C-TA, Luffi P, Höink T, Li J, Dasgupta R, Hernlund J (2010) Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463:930–935

    Article  Google Scholar 

  • Luis J, Miranda J (2008) Reevaluation of magnetic chrons in the North Atlantic between 35°N and 47°N: implications for the formation of the Azores Triple Junction and associated plateau. J Geophys Res 113:B10105

    Article  Google Scholar 

  • Luis JF, Neves MC (2006) The isostatic compensation of the Azores Plateau: a 3D admittance and coherence analysis. J Volcanol Geotherm Res Volcan Geol Azores Isl 156(1–2):10–22

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res 112:B03211

    Article  Google Scholar 

  • Madeira P, Kroh A, de Frias Martin AM, Ávila SP (2007) The marine fossils on Santa Maria island: an historical overview. Acoreana 5:59–73

    Google Scholar 

  • Madureira P, Moreira M, Mata J, Allègre C-J (2005) Primitive neon isotopes in Terceira Island (Azores archipelago). Earth Planet Sci Lett 233:429–440

    Article  Google Scholar 

  • Madureira P, Mata J, Mattielli N, Queiroz G, Silva P (2011) Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos 126:402–418

    Article  Google Scholar 

  • Mallik A, Dasgupta R (2012) Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett 329–330:97–108

    Article  Google Scholar 

  • Martins S, Mata J, Munhá J, Mendes M, Maerschalk C, Caldeira R, Mattielli N (2010) Chemical and mineralogical evidence of the occurrence of mantle metasomatism by carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineral Petrol 99:43–65

    Article  Google Scholar 

  • Mata J, Kerrich R, MacRae ND, Wu C (1998) Elemental and isotopic (Sr, Nd, and Pb) characteristics of Madeira Island basalts: evidence for a composite HIMU—EM I plume fertilizing lithosphere. Can J Earth Sci 35(9):980–997

    Article  Google Scholar 

  • Mata J, Moreira M, Doucelance R, Ader M, Silva LC (2010) Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: implications for carbon provenance. Earth Planet Sci Lett 291(1–4):70–83

    Article  Google Scholar 

  • Matias L, Dias NA, Morais I, Vales D, Carrilho F, Madeira J, Gaspar JL, Senos L, Silveira AB (2007) The 9th of July 1998 Faial Island (Azores, North Atlantic) seismic sequence. J Seismol 11(3):275–298

    Article  Google Scholar 

  • Mattielli N, Weis D, Scoates JS, Shimizu N, Gregoire M, Mennessier JP, Cottin JY, Giret A (1999) Evolution of heterogeneous lithospheric mantle in a plume environment beneath the kerguelen archipelago. J Petrol 40(11):1721–1744

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29(3):625–679

    Article  Google Scholar 

  • McKenzie DAN, O’Nions RK (1995) The source regions of Ocean Island Basalts. J Petrol 36(1):133–159

    Article  Google Scholar 

  • Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103:18325–18356

    Article  Google Scholar 

  • Millet M-A, Doucelance R, Baker JA, Schiano P (2009) Reconsidering the origins of isotopic variations in Ocean Island Basalts: insights from fine-scale study of São Jorge Island, Azores archipelago. Chem Geol 265(3–4):289–302

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung SH (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303(5656):338–343

    Article  Google Scholar 

  • Moreira M, Doucelance R, Kurz MD, Dupre B, Allegre CJ (1999) Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet Sci Lett 169(1–2):189–205

    Article  Google Scholar 

  • Mourão C, Mata J, Doucelance R, Madeira J, Millet MA, Moreira M (2012a) Geochemical temporal evolution of Brava Island magmatism: constraints on the variability of Cape Verde mantle sources and on carbonatite–silicate magma link. Chem Geol 334:44–61

    Article  Google Scholar 

  • Mourão C, Moreira M, Mata J, Raquin A, Madeira J (2012b) Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume. Contrib Mineral Petrol 163:995–1009

    Article  Google Scholar 

  • Niu Y, Wilson M, Humphreys ER, O’Hara MJ (2011) The Origin of Intra-plate Ocean Island Basalts (OIB): the Lid Effect and its Geodynamic Implications. J Petrol 52:1443–1468

    Article  Google Scholar 

  • Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ, Taylor RN (1998) High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry; insights into the depleted mantle. Chem Geol 149(3–4):211–233

    Article  Google Scholar 

  • O’Hara MJ (1998) Volcanic Plumbing and the space problem—Thermal and Geochemical Consequences of Large-Scale Assimilation in Ocean Island development. J Petrol 39(5):1077–1089

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of a pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res 108(2):2125

    Article  Google Scholar 

  • Pfänder JA, Münker C, Stracke A, Mezger K (2007) Nb/Ta and Zr/Hf in ocean island basalts—implications for crust-mantle differentiation and the fate of Niobium. Earth Planet Sci Lett 254(1–2):158–172

    Article  Google Scholar 

  • Philpotts JA, Schnetzler CC (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim Cosmochim Acta 34(3):307–322

    Article  Google Scholar 

  • Pilet S, Baker M, Stolper E (2008) Metasomatized lithosphere and the origin of Alkaline Lavas. Science 320(5878):916–919

    Article  Google Scholar 

  • Prytulak J, Elliott T (2009) Determining melt productivity of mantle sources from 238U–230Th and 235U–231Pa disequilibria; an example from Pico Island, Azores. Geochim Cosmochim Acta 73(7):2103–2122

    Article  Google Scholar 

  • Putirka K (2008) Excess temperatures at ocean islands: implications for mantle layering and convection. Geology 36(4):283–286

    Article  Google Scholar 

  • Regelous M, Hofmann AW, Abouchami W, Galer SJG (2003) Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. J. Pet. 44(1):113–140

    Article  Google Scholar 

  • Ritsema J, Allen RM (2003) The elusive mantle plume. Earth Planet Sci Lett 207:1–12

    Article  Google Scholar 

  • Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472(7342):209–212

    Article  Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem Geol 145(3–4):447–460

    Article  Google Scholar 

  • Schaefer BF, Turner S, Parkinson I, Rogers N, Hawkesworth C (2002) Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume. Nature 420:304–307

    Article  Google Scholar 

  • Schilling J-G (1975) Azores mantle blob: rare-earth evidence. Earth Planet Sci Lett 25:103–115

    Article  Google Scholar 

  • Schmincke H-U (1973) Magmatic evolution and tectonic regime in the Canary, Madeira, and Azores Island Groups. Geol Soc Am Bull 84:633–648

    Article  Google Scholar 

  • Searle RC (1980) Tectonic pattern of the Azores spreading center and triple junction. Earth Planet Sci Lett 51:415–434

    Article  Google Scholar 

  • Silveira G, Vinnik L, Stutzmann E, Farra V, Kiselev S, Morais I (2010) Stratification of the Earth beneath the Azores from P and S receiver functions. Earth Planet Sci Lett 299(1–2):91–103

    Article  Google Scholar 

  • Sleep NH (1990) Hotspots and mantle plumes; some phenomenology. J Geophys Res 95(B5):6715–6736

    Article  Google Scholar 

  • Sleep NH, Zahnle K (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res 106(1):1373–1399

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316(5823):412–417

    Article  Google Scholar 

  • Späth A, le Roex AP, Opiyo-Akech N (2001) Plume-lithosphere interaction and the origin of Continental Rift-related alkaline volcanism—the Chyulu Hills Volcanic Province, Southern Kenya. J Petrol 42(4):765–787

    Article  Google Scholar 

  • Stagno V, Frost D (2010) Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett 300:72–84

    Article  Google Scholar 

  • Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359(6391):123–129

    Article  Google Scholar 

  • Stracke A, Bourdon B (2009) The importance of melt extraction for tracing mantle heterogeneity. Geochim Cosmochim Acta 73(1):218–238

    Article  Google Scholar 

  • Stracke A, Salters VJM, Sims KWW (1999) Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics. Geochem Geophys Geosyst 1:1–15

    Google Scholar 

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4(3):Q8003

    Article  Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU and the rest of the mantle zoo. Geochem Geophys Geosyst 6:Q05007

    Article  Google Scholar 

  • Sweeney RJ, Green DH, Sie SH (1992) Trace and minor element partitioning between garnet and amphibole and carbonatitic melt. Earth Planet Sci Lett 113(1–2):1–14

    Article  Google Scholar 

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett 267(1–2):17–31

    Article  Google Scholar 

  • Tolstikhin I, Hofmann AW (2005) Early crust on top of the Earth’s core. Phys Earth Planet Inter 148(2–4):109–130

    Article  Google Scholar 

  • Tsuno K, Dasgupta R (2011) Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol 161(5):743–763

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Rogers N, King P (1997) U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chem Geol 139(1–4):145–164

    Article  Google Scholar 

  • Vogt PR, Jung WY (2004) The Terceira Rift as hyper-slow, hotspot-dominated oblique spreading axis: a comparison with other slow-spreading plate boundaries. Earth Planet Sci Lett 218:77–90

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Wanless VD, Perfit MR, Ridley WI, Klein E (2010) Dacite petrogenesis on Mid-Ocean Ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51(12):2377–2410

    Article  Google Scholar 

  • Weis D, Frey FA (1996) Role of the Kerguelen Plume in generating the eastern Indian Ocean seafloor. J Geophys Res 101(B6):13831–13849

    Article  Google Scholar 

  • Weis D, Kieffer B, Maerschalk C, Barling J, de Jong J, Williams GA, Hanano D, Pretorius W, Mattielli N, Scoates JS, Goolaerts A, Friedman RM, Mahoney JB (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem Geophys Geosyst 7(8):Q08006

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS 72:441

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS 79:579

    Article  Google Scholar 

  • White WM, Hofmann AW (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296:821–825

    Article  Google Scholar 

  • White WM, Hart SR, Schilling JG (1975) Geochemistry of the Azores and the Mid-Atlantic Ridge; 29°N to 60°N. Year B Carnegie Inst Wash 74:224–234

    Google Scholar 

  • White WM, Tapia MDM, Schilling J-G (1979) The petrology and geochemistry of the Azores Islands. Contrib Mineral Petrol 69:201–213

    Article  Google Scholar 

  • White R, McKenzie D, O’Nions R (1992) Oceanic crustal thickness from seismic measurements and rare-earth element inversions. J Geophys Res 97(B13):19683–19715

    Article  Google Scholar 

  • Widom E, Carlson RW, Gill JB, Schmincke HU (1997) Th-Sr-Nd-Pb isotope and trace element evidence for the origin of the Sao Miguel, Azores, enriched mantle source. Chem Geol 140(1–2):49–68

    Article  Google Scholar 

  • Yang T, Shen Y, van der Lee S, Solomon SC, Hung S-H (2006) Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth Planet Sci Lett 250(1–2):11–26

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Pl Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the help by D. Garbe-Schönberg and U. Westernströer during the trace element analyses in Kiel. Stephan Klemme is acknowledged for his patient and quick help with partition coefficients. This study was funded by a grant from the Deutsche Forschungsgemeinschaft (BE4459/1-1) and by Fundação para a Ciência e Tecnologia (Portugal) through the projects EVOLV (PTDC/CTE-GIN/71838/2006), Pest-OE/CTE/UI0263/2011 and Pest-OE/CTE/LA0019/201. We also thank J. Habermann and J. Titschack for help during work in the field. We acknowledge the help of V.-H. Forjaz and the Azores Volcanological and Geothermal Observatory during various stays in the Azores, and ChB thanks Andreas Stracke and Stephan Klemme for an entertaining field trip. We also acknowledge the very constructive and helpful comments of Radjeep Dasgupta and two anonymous reviewers. We also acknowledge the help of A. Mohammadi for providing enough well-roasted coffee to stand the test of writing and revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beier.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 95 kb)

Supplementary material 2 (XLSX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beier, C., Mata, J., Stöckhert, F. et al. Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores. Contrib Mineral Petrol 165, 823–841 (2013). https://doi.org/10.1007/s00410-012-0837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0837-2

Keywords

Navigation