Skip to main content
Log in

The Lyngen Gabbro: the lower crust of an Ordovician Incipient Arc

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present evidence for the origin of the Lyngen Gabbro of the Ordovician Lyngen Magmatic Complex in Troms, Northern Norway. The two magmatic suites of the Lyngen Gabbro strike parallel NNE-SSW, and have distinct magmatic signatures. We define these signatures by using major and trace-element analyses together with selected major- and trace-element mineral analyses and 143Nd/144Nd-isotope whole-rock analyses of gabbroic to tonalitic plutonic rocks from seven detailed cross-sections from this large gabbro-complex. The Western suite of the Lyngen Gabbro precipitated from magma that may have been derived from the same system as the associated volcanic rocks. The gabbros have high An-content (An>90) of their plagioclases relative to co-existing mafic minerals. Together with somewhat high ɛNd(t) values (+6), this implies that the parental magmas were hydrous tholeiites similar to those found in back arc basins today. The Eastern suite, on the other hand, consist of cumulates that were precipitated from melts resembling those of ultra-depleted high-Ca boninitic magmas found in fore-arcs. Extremely high-An plagioclases (An>95) co-exist with evolved mafic minerals and oxides, and the ɛNd(t) values are lower (+4) than in the Western suite. The Eastern suite has no volcanic counterpart, but dikes intersecting the suites have compositions that possibly represent its parental magma. The oceanic Rypdalen Shear Zone generally separates the two suites in the north, but several non-tectonic transitions from boninitic to tholeiitic signatures southwards advocate that the magmatism happened concurrently. The magmatic proximity between the suites, the hydrous magmatism and the absence of a silicic or calc-alkaline mature arc section, suggests that the Lyngen Gabbro formed in the Iapetus Ocean under conditions presently found in incipient arcs later emplaced as outer arc highs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anders E, Grevesse N (1989) Abundances of the elements; meteoritic and solar. Geochem Cosm Acta 53(1):197–214

    Article  CAS  Google Scholar 

  • Andresen A, Stelthenpohl MG (1994) Evidence of ophiolite obduction, terrain accretion and polyorogenic evolution of the north Scandinavian Caledonides. Tectonophysics 231:59–70

    Article  Google Scholar 

  • Arculus RJ, Wills KJA (1990) The petrology of the plutonic rocks and inclusions from the Lesser Antilles Island Arc. J Petrol 21:743–799

    Google Scholar 

  • Arth JG (1976) Behaviour of trace elements during magmatic processes-a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47

    CAS  Google Scholar 

  • Cameron WE (1993) Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Mineral Petrol 89(2–3):239–255

    Google Scholar 

  • Cann JR (1970) Rb, Sr, Y, Zr and Nb in some Ocean Floor Basaltic Rocks. Earth Planet Sci Lett 10:7–11

    Article  CAS  Google Scholar 

  • Cannat M, Chatin F, Whitechurch H, Ceuleneer G (1997) Gabbroic rocks trapped in the upper mantle in the Mid-Atlantic Ridge. In: Karson JA, Cannat M, Miller DJ, Agar SM, Barling J, Casey JF, Ceuleneer G, Dilek Y, Fletcher JM, Fujibayashi N, Gaggero L, Gee JS, Hurst SD, Kelley DS, Kempton PD, Lawrence RM, Marchig V, Mutter C, Niida K, Rodway K, Ross DK, Stephens CJ, Werner C-D, Whitechurch H, Stokking L (eds) Proceedings of the ocean drilling program, scientific results 153:243–264

  • Chroston PN (1972) A gravity profile across Lyngenhalvøya, Troms, Northern Norway. Norsk Geologisk Tidsskrift 55:295–303

    Google Scholar 

  • Coish RA (1977) Ocean-floor metamorphism in the Betts cove Ophiolite, Newfoundland. Contrib Mineral Petrol 60:255–270

    CAS  Google Scholar 

  • Crawford AJ, Beccaluva L, Serri G (1981) Tectonomagmatic evolution of the West Philipine-Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356

    Article  Google Scholar 

  • Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites and related rocks. Allen & Unwin, New Zealand, pp 2–49

    Google Scholar 

  • Dallmeyer RD, Andresen A (1992) Polyphase tectonothermal evolution of exotic Caledonian nappes in Troms, Norway; evidence from 40Ar/39Ar mineral ages. Lithos 29(1–2):19–42

    Article  CAS  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53 (2):189–202

    Article  CAS  Google Scholar 

  • Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth JG, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm HU, Yoshinobu A (2000) A long in situ section of the lower ocean crust; results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179(1):31–51

    Article  CAS  Google Scholar 

  • Dunning GR, Pedersen RB (1988) U/Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus. Contrib Mineral Petrol 98:13–23

    CAS  Google Scholar 

  • Elliot T, Plank T, Morris J, Zindler A (1997) Timescales and element transport in the subduction zone: the Mariana arc as a representative case study. In: Abstract of rates and timescales of magmatic processes. Geol. Soc. Lon, London

  • Elthon D (1987) Petrology of gabbroic rocks from the Mid-Cayman Rise spreading center. J Geophys Res 92(B1):658–682

    CAS  Google Scholar 

  • Elthon D, Stewart M, Ross DK (1994) Compositional trends of minerals in oceanic cumulates. J Geophys Res 97(B11):15189–151992

    Google Scholar 

  • Emeleus GH, Cheadle MJ, Hunter RH, Upton BGJ, Wadsworth WJ (1996) The Rum Layered suite. In: Cawthorn RG (ed) Layered intrusions. Elsevier, Amsterdam

    Google Scholar 

  • Furnes H, Pedersen RB (1995) The Lyngen magmatic complex: geology and geochemistry Geonytt 22:30

    Google Scholar 

  • Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subduction-related igneous rocks. Nature 365(6444):332–334

    Article  CAS  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes, IV. A Revised and internally consistent thermodynamic model for the interpolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  CAS  Google Scholar 

  • Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostand Newslett 18 (special issue)

    Google Scholar 

  • Green TH (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 16 years later. Chem Geol 117:1–36

    Article  CAS  Google Scholar 

  • Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of Mid-Ocean Basalt (MORB). In: Morgan JP, Blackman DK, Sinton JM (eds) Mantle flow and mid ocean ridges. Geophys Monogr 71:281–310

    Google Scholar 

  • Hebert R, Laurent R (1990) Mineral chemistry of the plutonic section of the Troodos Ophiolite; new constraints for genesis of arc-related ophiolites. In: Ophiolites; oceanic analogues; proceedings of the symposium “Troodos 1987”. Minist Agric and Nat Resour, Nicosia, Cyprus, pp 149–163

  • Hetland A (1996) Petrology and petrogenesis of high-Ca tonalites and quartz-bearing gabbros within the layered series of Lyngen Magmatic Complex (Troms, Norway). Thesis for the Cand. Scient. Degree, University of Bergen

  • Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46:2099–2115

    Article  CAS  Google Scholar 

  • Hickey-Vargas R (1989) Boninites and tholeiites from DSDP Site 458, Mariana Forearc. In: Crawford AJ (ed) Boninites. Unwin Hyman, London, pp 340–354

    Google Scholar 

  • Housh TB, Luhr JF (1991) Plagioclase-melt equilibria in hydrous systems. Am Min 76:477–492

    CAS  Google Scholar 

  • Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICP-MS: a powerful new tool for high-precision trace elements analysis in earth sciences: evidence from analysis of selected USGS standards. Chem Geol 38:323–344

    Google Scholar 

  • Kelemen PB, Koga K, Shimizu N (1997) Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman Ophiolite; implications for the origin of the oceanic crust. Earth Planet Sci Lett 146(3–4):475–488

    Article  CAS  Google Scholar 

  • Korenaga J, Kelemen PB (1997) Origin of gabbro sills in the Moho transition zone of the Oman Ophiolite; implications for magma transport in the oceanic lower crust. J Geophys Res 102(B12):27729–27749

    Article  CAS  Google Scholar 

  • Kostopoulos DK, Murton BJ (1992) Origin and distribution of components in boninite genesis: significance of the OIB component. In: Parson LM, Murton BJ, Browning P (eds) Ophiolites and their Modern Oceanic Analogues. Geol Soc Special Publ 60:133–154

    Google Scholar 

  • Kvassnes AJ (1997) The Western suite of the Lyngen Gabbro and its Petrogenetic relations to the Volcanic and Ultramafic rocks associated with the Lyngen Magmatic Complex in Troms, Northern Norway. Thesis for the Cand. Scient. Degree, University of Bergen

  • Langmuir CH (1989) Geochemical consequences of in situ crystallization. Nature 340(6230):199–205

    Article  CAS  Google Scholar 

  • Minsaas O (1981) Lyngenhalvøyas geologi, med spesiell vekt på den sedimentologiske utvikling av de ordovisisk-siluriske klastiske sekvenser som overligger Lyngen Gabbrokompleks, Troms. Cand. Scient. (The Geology of the Lyngen Peninsula, with special emphasis on the sedimentological development of the Ordovician-Silurian clastic sequences overlying Lyngen Gabbro-complex.) Thesis, University of Bergen

  • Minsaas O, Sturt BA (1985) The Ordovician-Silurian clastics sequence overlying the Lyngen Gabbro Complex, and its environmental significance. In: Gee DG, Sturt BA (eds) The Caledonide Orogen: -Scandinavia and related areas, vol 1, pp 569–577

  • Miyashiro A (1973) The Troodos Ophiolite Complex was probably formed in and Island Arc, Earth Planet Sci Lett 19:218–224

    Article  CAS  Google Scholar 

  • Moen-Eikeland HE (1999) Intrusive relasjoner i og petrogense av gabbroiske og tonalittiske bergarter på Lyngstuva, Troms, nord Norge. (Intrusive relations in, and petrogenesis of gabbroic and tonalittic rocks at Lyngstuva, Troms, North Norway.) Thesis for the Cand. Scient Degree, University of Bergen

  • Munday RJC (1974) The geology of the northern half of the Lyngen Peninsula, Troms, Norway. Norsk Geologisk Tidsskrift 54 (suppl 1):49–62

    CAS  Google Scholar 

  • Nicolas A (1989) Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer, Dordrecht, p 367

    Google Scholar 

  • Oliver GH, Krogh TE (1995) U-Pb zircon ages of 469±5 Ma for a metatonalite from the Kjosen Unit of the Lyngen magmatic complex, northern Norway. Norges Geologiske Undersøkelser 428:27–33

    Google Scholar 

  • Padfield T, Gray A (1971) Major element rock analyses by X-ray fluorescence: a simple fusion method. NV Philips, Eindhoven, Analytical Equipment FS 35

  • Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase; melt equilibria at 5 and 10 kbar; implications for the origin of magmatic high-An plagioclase. Contrib Mineral Petrol 118(4):420–432

    CAS  Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pedersen RB, Hertogen J (1990) Magmatic Evolution of the Karmøy Ophiolite Complex, SW Norway: relationships between MORB-IAT-boninitic-Calc-alkaline and alkaline magmatism. Contrib Mineral Petrol 104:227–293

    Google Scholar 

  • Pedersen RB Furnes H (1991) Geology, magmatic affinity and geotectonic environment of some Caledonian ophiolites in Norway. J Geodyn 13:183–203

    Article  Google Scholar 

  • Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium neodymium for isotope analyses in silicate samples, based on extraction chromatography. Anal Chim Acta 298:209–217

    Article  CAS  Google Scholar 

  • Randall BAO (1971) The igneous rocks of the Lyngen Peninsula, Troms, Norway. In: The Caledonian geology of northern Norway. Bulletin—Norges Geologiske Undersøkelse 269:143–146

  • Richard P, Shimizu N, Allégre CJ (1976) 143Nd/144Nd, a natural tracer: An application to oceanic basalts. Earth Planet Sci Lett 60:93–104

    Google Scholar 

  • Schouten H, Kelemen PB (2002) Melt viscosity, temperature and transport processes, Troodos Ophiolite, Cyprus. Earth Planet Sci Lett 201(2):337–352

    Article  CAS  Google Scholar 

  • Selbekk RS (1995) Tonalitt genese i Lyngen Magmatiske kompleks, Troms. (Tonalite genesis in the Lyngen Magmatic Complex, Troms.) Thesis for the Cand. Scient. Degree, University of Bergen

  • Selbekk RS, Furnes H, Pedersen RB, Skjerlie KP (1998) Contrasting tonalite genesis in the Lyngen magmatic complex, North Norwegian Caledonides. Lithos 42(3–4):241–268

    Article  Google Scholar 

  • Selbekk RS, Bray CJ, Spooner ETC (2002) Formation of tonalite in island arcs by seawater-induced anatexis of mafic rocks; evidence from the Lyngen Magmatic Complex, North Norwegian Caledonides. Chem Geol 182:69–84

    Article  CAS  Google Scholar 

  • Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolite lavas. Earth Planet Sci Lett 59:101–118

    Article  CAS  Google Scholar 

  • Shimizu N, Hart SR (1982) Applications of the ion microprobe to geochemistry and cosmochemistry. Annu Rev Earth Planet Sci 10:483–526

    Article  CAS  Google Scholar 

  • Sieger RvdL, Arculus RJ, Pearce JA, Murton BJ (1992) 10. Petrography, mineral chemistry and phase relations of the basement boninite series of site 786, Izu-Bonin forearc. In: Fryer P, Pearce JA, Stokking LB et al (eds) Proceedings of the ocean drilling program, College Station, 125:171–125

  • Sinha AK, Hewitt DA (1986) Fluid interaction and element mobility in the development of ultramylonites. Geology 14:883–886

    CAS  Google Scholar 

  • Slagstad D (1995) Rypdalen skjærsone, en oceansk skjærsone i Lyngen Magmatiske Kompleks. (Rypdalen Shear Zone, an Oceanic Shearzone in the Lyngen magmatic complex.) Thesis for the Cand. Scient. Degree University of Bergen

  • Sun S-S (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands ad island arcs. Philos Trans R Soc Lond A297:409–445

    CAS  Google Scholar 

  • Taylor RN, Nesbitt RW (1988) Light rare-earth enrichmentof supra subduction-xone mantle: evidence from the Troodos ophiolite, Cyprus. Geology 16:448–451

    Article  CAS  Google Scholar 

  • Taylor RN, Bramley JM, Nesbitt RW (1992) Chemical transects across intra-oceanic arcs: implications for the tectonic setting of ophiolites. In: Parson LM, Murton BJ, Browning P (eds) Ophiolites and their Modern Oceanic Analogues. Geol Soc Special Publ 60:117–132

    Google Scholar 

  • Thy P, Schiffman P, Moores EM (1989) Igneous mineral stratigraphy and Chemistry of the Cyprus crustal study project drill core in the Plutonic sequences of the Troodos Ophiolite. In: Gibson IL, Malpas J, Robinson PT, Xenophontos C (eds) Cyprus crustal study project: initial report. Hole CY-4, pp 147–185

  • Walker DA, Cameron WE (1980) Boninite primary magmas; evidence from the Cape Vogel Peninsula, PNG. Contrib Mineral Petrol 83(1–2):150–158

    Google Scholar 

  • Weaver BL, Tarney J (1981) Chemical changes during dyke metamorphism in high-grade basement terranes. Nature 289:47–49

    CAS  Google Scholar 

  • Yang HJ, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol 124(1):1–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Harald Furnes, Dagfinn Slagstad and Rune Selbekk for assistance in the field, and Ole Tumyr for assistance in the lab. This manuscript was improved by an early review by Rhea Workman and formal reviews by Don Elthon and Alan Boudreau. The study was supported by the Norwegian Research Council and is Woods Hole Oceanographic Institution contribution# 11229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astri J. S. Kvassnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvassnes, A.J.S., Strand, A.H., Moen-Eikeland, H. et al. The Lyngen Gabbro: the lower crust of an Ordovician Incipient Arc. Contrib Mineral Petrol 148, 358–379 (2004). https://doi.org/10.1007/s00410-004-0609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0609-8

Keywords

Navigation