Skip to main content

Advertisement

Log in

Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A set of ensemble integrations from the Coupled Model Intercomparison Project phase 5, with historical forcing plus RCP4.5 scenario, are used to explore if state-of-the-art climate models are able to simulate previously reported linkages between sea-ice concentration (SIC) anomalies over the eastern Arctic, namely in the Greenland–Barents–Kara Seas, and lagged atmospheric circulation that projects on the North Atlantic Oscillation (NAO)/Arctic Oscillation (AO). The study is focused on variability around the long-term trends, so that all anomalies are detrended prior to analysis; the period of study is 1979–2013. The model linkages are detected by applying maximum covariance analysis. As also found in observational data, all the models considered here show a statistically significant link with sea-ice reduction over the eastern Arctic followed by a negative NAO/AO-like pattern. If the simulated relationship is found at a lag of one month, the results suggest that a stratospheric pathway could be at play as the driving mechanism; in observations this is preferentially shown for SIC in November. The interference of a wave-like anomaly over Eurasia, accompanying SIC changes, with the climatological wave pattern appears to be key in setting the mediating role of the stratosphere. On the other hand, if the simulated relationship is found at a lag of two months, the results suggest that tropospheric dynamics are dominant, presumably due to transient eddy feedback; in observations this is preferentially shown for SIC in December. The results shown here and previous evidence from atmosphere-only experiments emphasize that there could be a detectable influence of eastern Arctic SIC variability on mid-latitude atmospheric circulation anomalies. Even if the mechanisms are robust among the models, the timing of the simulated linkages strongly depends on the model and does not generally mimic the observational ones. This implies that the atmospheric sensitivity to sea-ice changes largely depends on the mean-flow and parameterizations, which could lead to misleading conclusions elsewhere if a multi-model ensemble-mean approach is adopted. It might also represent an important source of uncertainty in climate prediction and projection. Modelling efforts are hence further required to improve representation of the background atmospheric circulation and reduce biases, in order to attain more accurate covariability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905

    Article  Google Scholar 

  • Ambaum MHP, Hoskins BJ (2002) The NAO troposphere–stratosphere connection. J Clim 15:1969–1978

    Article  Google Scholar 

  • Bader J, Mesquita MDS, Hodges KI, Keenlyside N, Osterhus S, Miles M (2011) A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: observations and projected changes. Atmos Res 101:809–834

    Article  Google Scholar 

  • Balmaseda MA, Ferranti L, Molteni F, Palmer TN (2010) Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: implications for long-range predictions. Q J R Meteor Soc 136:1655–1664

    Article  Google Scholar 

  • Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett 40:4734–4739. doi:10.1002/grl.50880

    Article  Google Scholar 

  • Barnes EA, Polvani LM (2015) CMIP5 projections of Arctic Amplification, of the North American/North Atlantic circulation, and of their relationship. J Clim 28:5254–5271

    Article  Google Scholar 

  • Barnes EA, Screen JA (2015) The impact of Arctic warming on the midlatitude jet-stream: can it? has it? will it? WIREs Clim Change 6:277–286. doi:10.1002/wcc.337

    Article  Google Scholar 

  • Bretherton SB, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Bueh C, Nakamura H (2007) Scandinavian pattern and its climatic impact. Q J R Meteorol Soc 133:2117–2131

    Article  Google Scholar 

  • Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118:2494–2505

    Google Scholar 

  • Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nature Geosci 7:627–637

    Article  Google Scholar 

  • Comiso JC (2000, updated 2013) Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS—version 2. NASA DAAC at the National Snow and Ice Data Center, Boulder, CO, USA. http://nsidc.org/data/docs/daac/nsidc0079_bootstrap_seaice.gd.html

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorl Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17:877–889

    Article  Google Scholar 

  • Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767

    Article  Google Scholar 

  • Deser C, Tomas R, Alexander MA, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23:333–351

    Article  Google Scholar 

  • Doblas-Reyes FJ, Pavan V, Stephenson DB (2003) Multi-model seasonal hindcasts of the NAO. Clim Dyn 21:501–514

    Article  Google Scholar 

  • Ferreira D, Frankignoul C (2005) The transient atmospheric response to midlatitude SST anomalies. J Clim 18:1049–1067

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2015) Evidence for a waiver jet stream in response to rapid Arctic warming. Environ Res Lett 10:014005. doi:10.1088/1748-9326/10/1/014005

    Article  Google Scholar 

  • Francis JA, Chan W, Leathers DJ, Miller JR, Veron DE (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys Res Lett 36:L07503. doi:10.1029/2009GL037274

    Article  Google Scholar 

  • Frankignoul C, Sennéchael N, Cauchy P (2014) Observed atmospheric response to cold season sea ice variability in the Arctic. J Clim 27:1243–1254

    Article  Google Scholar 

  • Gao Y, Sun J, Li F, He S, Sandven S, Yan Q, Zhang Z, Lohmann K, Keenlyside N, Furevik T, Suo L (2015) Arctic sea ice and Eurasian climate: a review. Adv Atmos Sci 32:92–114

    Article  Google Scholar 

  • García-Serrano J, Frankignoul C (2015) On the feedback of the winter NAO-driven sea ice anomalies. Clim Dyn. doi:10.1007/s00382-015-2922-5

    Google Scholar 

  • García-Serrano J, Haarsma RJ (2016) Non-annular, hemispheric signature of the winter North Atlantic Oscillation. Clim Dyn. doi:10.1007/s00382-016-3292-3

    Google Scholar 

  • García-Serrano J, Frankignoul C, Gastineau G, de la Cámara A (2015) On the predictability of the winter Euro-Atlantic climate: lagged influence of autumn Arctic sea ice. J Clim 28:5195–5216

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J Clim 23:3282–3299

    Article  Google Scholar 

  • Germe A, Chevallier M, Salas y Mélia D, Sanchez-Gomez E, Cassou C (2014) Interannual predictability of Arctic sea ice in a global climate model: regional contrasts and temporal evolution. Clim Dyn. doi:10.1007/s00382-014-2071-2

    Google Scholar 

  • Grassi B, Redaelli G, Visconti G (2013) Arctic sea ice reduction and extreme climate events over the Mediterranean region. J Clim 26:10101–10110

    Article  Google Scholar 

  • Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013) Retrospective prediction of the global warming slowdown in the past decade. Nature Clim Change 3:649–653

    Article  Google Scholar 

  • Holton JR (1979) An introduction to dynamic meteorology, 3rd edn. Academic Press, New York

    Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  • Hopsch S, Cohen J, Dethloff K (2012) Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus 64A:18624

    Article  Google Scholar 

  • Hoskins BJ, Karoly D (1981) The steady linear response to of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Inoue J, Hori ME, Takaya K (2012) The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J Clim 25:2561–2568

    Article  Google Scholar 

  • Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus 64A:11595

    Article  Google Scholar 

  • Jones CD et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Article  Google Scholar 

  • Jung T, Kasper MA, Semmler T, Serrar S (2014) Arctic influence on subseasonal midlatitude prediction. Geophys Res Lett 41:3676–3680

    Article  Google Scholar 

  • Jung T, Doblas-Reyes FJ, Goessling H, Guemas V, Bitz C, Buontempo C, Caballero R, Jakobson E, Jungclaus J, Karcher M, Koenigk T, Matei D, Overland J, Spengler T, Yang S (2015) Polar-lower latitude linkages and their role in weather and climate prediction. Bull Am Meteorol Soc 96:ES197–ES200

    Article  Google Scholar 

  • Karspeck A, Yeager S, Danabasoglu G, Teng H (2014) An evaluation of experimental decadal predictions using CCSM4. Clim Dyn 44:907–923

    Article  Google Scholar 

  • Kim B-M, Son S-W, Min S-K, Jeong J-H, Kim S-J, Zhang X, Shim T, Yoon J-H (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Commun 5:4646. doi:10.1038/ncomms5646

    Article  Google Scholar 

  • King MP, Hell M, Keenlyside N (2015) Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Clim Dyn. doi:10.1007/s00382-015-2639-5

    Google Scholar 

  • Koenigk T, Caian M, Nikulin G, Schimanke S (2015) Regional Arctic sea ice variations as predictor for winter climate conditions. Clim Dyn. doi:10.1007/s00382-015-2586-1

    Google Scholar 

  • Kolstad EW, Charlton-Perez AJ (2011) Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim Dyn 37:1443–1456

    Article  Google Scholar 

  • Kretschmer M, Coumou D, Runge J, Donges JF (2016) Using causal effect networks to analyze different Arctic drivers of mid-latitude winter circulation. J Clim 29:4069–4081

    Article  Google Scholar 

  • Kug J-S, Jeong J-H, Jang Y-S, Kim B-M, Folland CK, Min S-K, Son S-W (2015) Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geosci 8:759–762

    Article  Google Scholar 

  • Kuroda Y, Kodera K (1999) Role of planetary waves in the stratosphere–troposphere coupled variability in the Northern Hemisphere winter. Geophys Res Lett 26:2375–2378

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256

    Article  Google Scholar 

  • Langehaug HR, Geyer F, Smedsrud LH, Gao Y (2013) Arctic sea decline and ice export in the CMIP5 historical simulations. Ocean Model 71:114–126

    Article  Google Scholar 

  • Lee Y-Y, Black RX (2015) The structure and dynamics of the stratospheric Northern Annular mode in CMIP5 models. J Clim 28:86–107

    Article  Google Scholar 

  • Li F, Wang H (2013) Autumn sea ice cover, winter Northern Hemisphere Annular Mode, and winter precipitation in Eurasia. J Clim 26:3968–3981

    Article  Google Scholar 

  • Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci 109:4074–4079

    Article  Google Scholar 

  • Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: main features and storm track characteristics of the response. J Clim 17:857–876

    Article  Google Scholar 

  • Manzini E et al (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J Geophys Res. doi:10.1002/2013JD021403

    Google Scholar 

  • Meehl GA et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267

    Article  Google Scholar 

  • Mignot J, García-Serrano J, Swingedouw D, Germe A, Nguyen S, Ortega P, Guilyardi E, Ray S (2015) Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model. Clim Dyn. doi:10.1007/s00382-015-2898-1

    Google Scholar 

  • Mitchell DM, Gray LJ, Anstey J, Baldwin MP, Charlton-Perez AJ (2013) The influence of stratospheric vortex displacements and splits on surface climate. J Clim 26:2668–2682

    Article  Google Scholar 

  • Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M (2014) Robust Arctic sea-ice influence on the frequent Eurasian cold winters in the recent past. Nature Geosci. doi:10.1038/ngeo2277

    Google Scholar 

  • Msadek R, Vecchi GA, Winton M, Gudgel RG (2014a) Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys Res Lett. doi:10.1002/2014GL060799

    Google Scholar 

  • Msadek R, Delworth TL, Rosati A, Anderson W, Vecchi G, Chang Y-S, Dixon KW, Gudgel RG, Stern W, Winttenberg A, Yang X, Zeng F, Zhang R, Zhang S (2014b) Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J Clim 27:6472–6496

    Article  Google Scholar 

  • Nakamura T, Yamazaki K, Iwamoto K, Honda M, Miyoshi Y, Ogawa Y, Ukita J (2015) A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice rediction in late autumn. J Geophys Res Atmos. doi:10.1002/2014JD022848

    Google Scholar 

  • Nakamura T, Yamazaki K, Iwamoto K, Honda M, Miyoshi Y, Ogawa Y, Tomikawa Y, Ukita J (2016) The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys Res Lett 43. doi:10.1002/2016GL068330

    Google Scholar 

  • Overland J, Francis JA, Hall R, Hanna E, Kim S-J, Vihma T (2015) The melting Arctic and mid-latitude weather patterns: are they connected? J Clim 28:7917–7932

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2014) Response to the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. J Clim 27:244–264

    Article  Google Scholar 

  • Perlwitz J, Hoerling M, Dole R (2015) Arctic tropospheric warming and: causes and linkages to lower latitudes. J Clim 28:2154–2167

    Article  Google Scholar 

  • Petoukhov V, Semenov V (2010) A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111. doi:10.1029/2009JD013568

    Article  Google Scholar 

  • Pohlmann H, Müller WA, Kulkarni K, Kameswarrao M, Matei D, Vamborg FSE, Kadow C, Illing S, Marotzke J (2013) Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys Res Lett 40:5798–5802

    Article  Google Scholar 

  • Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17:3548–3554

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670

    Google Scholar 

  • Reichler T, Kim J, Manzini E, Kröger J (2012) A stratospheric connection to Atlantic climate variability. Nature Geosci 5:783–787

    Article  Google Scholar 

  • Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L (2015) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn. doi:10.1007/s00382-015-2678-y

    Google Scholar 

  • Scaife AA, Arribas A, Blockley E, Brookshaw A, Clark RT, Dunstone N, Eade R, Fereday D, Folland CK, Gordon M, Hermanson L, Knight JR, Lea DJ, MacLachlan C, Maidens A, Martin M, Peterson AK, Smith D, Vellinga M, Wallace E, Waters J, Williams A (2014) Skillful long-range prediction of European and North American winters. Geophys Res Lett 41:2514–2519

    Article  Google Scholar 

  • Screen JA, Simmonds I (2013) Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett 40:959–964. doi:10.1002/grl.50174

    Article  Google Scholar 

  • Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed Arctic sea ice loss. J Clim 26:1230–1248

    Article  Google Scholar 

  • Screen JA, Deser C, Simmonds I, Tomas R (2014) Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim Dyn 43:333–344

    Article  Google Scholar 

  • Screen JA, Deser C, Sun L (2015) Projected changes in regional extremes arising from Arctic sea loss. Environ Res Lett. doi:10.1088/1748-9326/10/8/084006

    Google Scholar 

  • Seierstad IA, Bader J (2009) Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Clim Dyn 33:937–943

    Article  Google Scholar 

  • Semmler T, McGrath R, Wang S (2012) The impact of Arctic sea ice on the Arctic energy budget and on the climate of the Northern mid-latitudes. Clim Dyn 39:2675–2694

    Article  Google Scholar 

  • Semmler T, Jung T, Serrar S (2015) Fast atmospheric response to a sudden thinning of Arctic sea ice. Clim Dyn. doi:10.1007/s00382-015-2629-7

    Google Scholar 

  • Shaw TA, Perlwitz J, Weiner O (2014) Troposphere–stratosphere coupling: links to North Atlantic weather and climate, including their representation in CMIP5 models. J Geophys Res 119:5864–5880

    Article  Google Scholar 

  • Smith DM, Scaife AA, Boer GJ, Caian M, Doblas-Reyes FJ, Guemas V, Hawkins E, Hazeleger W, Hermanson L, Ho CK, Ishii M, Kharin V, Kimoto M, Kirtman BP, Lean J, Matei D, Merryfield WJ, Müller WA, Pohlmann H, Rosati A, Wouters B, Wyser K (2013) Real-time multi-model decadal predictions. Clim Dyn 41:2875–2888

    Article  Google Scholar 

  • Stockdale TN, Molteni F, Ferranti L (2015) Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophys Res Lett. doi:10.1002/2014GL062681

    Google Scholar 

  • Strong C, Magnusdottir G, Stern H (2009) Observed feedback between winter sea ice and the North Atlantic Oscillation. J Clim 22:6021–6032

    Article  Google Scholar 

  • Sun L, Deser C, Tomas RA (2015) Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J Clim 28:7824–7845

    Article  Google Scholar 

  • Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Influence of internal variability on Arctic sea-ice trends. Nature Clim Change 5:86–89

    Article  Google Scholar 

  • Takaya K, Nakamura H (2008) Precursory changes in planetary wave activity for midwinter surface pressure anomalies over the Arctic. J Meteorol Soc Jpn 86:415–427

    Article  Google Scholar 

  • Tang Q, Zhang X, Yang X, Francis JA (2013) Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 8:014036

    Article  Google Scholar 

  • Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35:1175–1214

    Article  Google Scholar 

  • Walsh JE (2014) Intensified warming of the Arctic: causes and impacts on middle latitudes. Glob Planet Change 117:52–63

    Article  Google Scholar 

  • Wettstein JJ, Deser C (2014) Internal variability in projections of twenty-first-century Arctic sea ice loss: role of the large-scale atmospheric circulation. J Clim 27:527–550

    Article  Google Scholar 

  • Woollings T, Harvey B, Masato G (2014) Arctic warming, atmospheric blocking and cold European winters in CMIP5 models. Environ Res Lett 9:014002. doi:10.188/1748-9326/9/1/014002

    Article  Google Scholar 

  • Wu Q, Zhang X (2010) Observed forcing-feedback process between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J Geophys Res. doi:10.1029/2009JD013574

    Google Scholar 

  • Wu L, He F, Liu Z, Li C (2007) Atmospheric teleconnections of tropical Atlantic variability: interhemispheric, tropical-extratropical, and cross-basin interactions. J Clim 20:856–870

    Article  Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A, Watanabe M (2015) Towards predictive understanding of regional climate change. Nature Clim Change. doi:10.1038/nclimate2689

    Google Scholar 

  • Zhang R (2015) Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc Natl Acad Sci 112:4570–4575

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union 7th Framework Programme (FP7 2007-2013), under grant agreement No. 308299 (NACLIM—www.naclim.eu). JG-S was partially supported by the H2020-funded MSCA-IF-EF DPETNA project (GA No. 655339). This work was also supported by the BMBF project CLIMPRE InterDec (FKZ:01LP1609A; DM) and the RCN project KLIMAFORSK InterDec (260393; YG) within the framework of JPI CLIM Belmont-Forum InterDec consortial project. JG-S and MPK thank the 6th Severo Ochoa mobility programme for funding the visit of the latter to BSC-CNS in October 2015. The authors thank Ileana Bladé (UB, Spain) and Lantao Sun (CIRES-NOAA/ESRL, USA) for useful discussions, and Neven S. Fučkar (BSC-CNS) for his help during the review process. Technical support at BSC-CNS (Computational Earth Sciences group) is sincerely acknowledged. The authors are also grateful to the anonymous reviewers for their comments, which helped to improve the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. García-Serrano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7016 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Serrano, J., Frankignoul, C., King, M.P. et al. Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate. Clim Dyn 49, 2407–2429 (2017). https://doi.org/10.1007/s00382-016-3454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3454-3

Keywords

Navigation