Skip to main content
Log in

Tropical impact on the interannual variability and long-term trend of the Southern Annular Mode during austral summer from 1960/1961 to 2001/2002

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Tropical influence on the austral summer Southern Annular Mode (SAM) over the ERA-40 period 1960/1961–2001/2002 is investigated using (1) a partially coupled climate model (PCM) driven by observed wind stress and (2) a version of the ECMWF atmospheric model by means of a relaxation technique. We show that the tropical influence in the PCM is dominated by El Niño Southern Oscillation (ENSO) whereas the relaxation experiments suggest an additional influence independent of ENSO. In the observations, we find that the simultaneous influence of ENSO on the summer SAM was much stronger after 1979 than before, with the consequence that the ensemble mean of the PCM captures around 50 % of the interannual variance of the SAM after 1979 and less than 10 % before. Nevertheless, in the ensemble mean of the PCM, the relationship between ENSO and the summer SAM is stable throughout the whole period 1960/1961–2001/2002, and it is the individual ensemble members that exhibit a non-stationary relationship like that found in the observations. It follows that variability not related to the observed wind forcing used to drive the PCM is important for obscuring the ENSO/SAM relationship. The experiments using relaxation show that tropical forcing was important for both the interannual variability and the trend of the summer SAM, even before 1979. Adding the observed extratropical sea surface temperature and sea-ice (SSTSI) to the tropical relaxation runs improves the model performance, indicative of a positive feedback from extratropical SSTSI onto the SAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. It should be noted that their study period covers the 25 summers from 1979/1980 to 2003/2004 and that they define summer as the months November–February.

  2. \(\sigma\) refers to one standard deviation of the SAM index from ERA-40 for which the corresponding spatial pattern is shown in Fig. 3a.

References

  • Arblaster JM, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Clim 19(12):2896–2905. doi:10.1175/JCLI3774.1

    Article  Google Scholar 

  • Baldwin MP (2001) Annular modes in global daily surface pressure. Geophys Res Lett 28(21):4115–4118. doi:10.1029/2001GL013564

    Article  Google Scholar 

  • Ding H, Greatbatch RJ, Latif M, Park W, Gerdes R (2013a) Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J Clim 26(19):7650–7661. doi:10.1175/JCLI-D-12-00626.1

  • Ding H, Greatbatch RJ, Park W, Latif M, Semenov VA, Sun X (2013b) The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model. Climate Dyn 40(1):6. doi:10.1007/s00382-012-1642-3

    Google Scholar 

  • Ding H, Greatbatch RJ, Gollan G (2014) Tropical influence independent of ENSO on the austral summer Southern Annular Mode. Geophys Res Lett. doi:10.1002/2014GL059987

    Google Scholar 

  • Ding Q, Steig EJ (2013) Temperature change on the Antarctic Peninsula linked to the Tropical Pacific*. J Clim. 26(19):7570–7585. doi:10.1175/JCLI-D-12-00729.1

    Article  Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Küttel M (2011) Winter warming in West Antarctica caused by central tropical Pacific warming. Nat Geosci 4(6):398–403. doi:10.1038/ngeo1129

    Article  Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Wallace JM (2012) Influence of the tropics on the Southern Annular Mode. J Clim 25(18):6330–6348, doi:10.1175/JCLI-D-11-00523.1

  • Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode. J Clim 19(6):979–997. doi:10.1175/JCLI3671.1

    Article  Google Scholar 

  • Fyfe J, Boer G, Flato G (1999) The Arctic and Antarctic Oscillations and their projected changes under global warming. Geophys Res Lett 26(11):1601–1604. doi:10.1029/1999GL900317

    Article  Google Scholar 

  • Gillett N, Allen M, Williams K (2003) Modelling the atmospheric response to doubled CO2 and depleted stratospheric ozone using a stratosphere-resolving coupled GCM. Q J R Meteorol Soc 129(589):947–966. doi:10.1256/qj.02.102

    Article  Google Scholar 

  • Gillett NP, Thompson DW (2003) Simulation of recent Southern Hemisphere climate change. Science 302(5643):273–275. doi:10.1126/science.1087440

    Article  Google Scholar 

  • Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26(4):459–462. doi:10.1029/1999GL900003

    Article  Google Scholar 

  • Greatbatch RJ, Li G, Zhang S (1995) Hindcasting ocean climate variability using time-dependent surface data to drive a model: an idealized study. J Phys Oceanogr 25(11):2715–2725. doi:10.1175/1520-0485(1995)025<2715:HOCVUT>2.0.CO;2

  • Greatbatch RJ, Gollan G, Jung T (2012a) An analysis of trends in the boreal winter mean tropospheric circulation during the second half of the 20th century. Geophys Res Lett 39(13):13809. doi:10.1029/2012GL052243

  • Greatbatch RJ, Gollan G, Jung T, Kunz T (2012b) Factors influencing Northern Hemisphere winter mean atmospheric circulation anomalies during the period 1960/61 to 2001/02. Quart J Roy Meteor Soc 138(669):1970–1982. doi:10.1002/qj.1947

    Article  Google Scholar 

  • Griffies S, Biastoch A, Böning C, Bryan F, Danabasoglu G, Chassignet E, England M, Gerdes R, Haak H, Hallberg R et al (2009) Coordinated ocean-ice reference experiments (cores). Ocean Model 26(1–2):1–46. doi:10.1016/j.ocemod.2008.08.007

    Article  Google Scholar 

  • Hoskins B, Fonseca R, Blackburn M, Jung T (2012) Relaxing the Tropics to an observedstate: analysis using a simple baroclinic model. Q J R Meteorol Soc 138(667):1618–1626. doi:10.1002/qj.1881

    Article  Google Scholar 

  • Jung T (2011) Diagnosing remote origins of forecast error: relaxation versus 4D-Var data-assimilation experiments. Q J R Meteorol Soc 137(656):598–606. doi:10.1002/qj.781

    Article  Google Scholar 

  • Jung T, Balsamo G, Bechtold P, Beljaars A, Köhler M, Miller M, Morcrette JJ, Orr A, Rodwell M, Tompkins A (2010a) The ECMWF model climate: recent progress through improved physical parametrizations. Q J R Meteorol Soc 136(650):1145–1160. doi:10.1002/qj.634

    Google Scholar 

  • Jung T, Miller M, Palmer T (2010b) Diagnosing the origin of extended-range forecast errors. Mon Wea Rev 138(6):2434–2446. doi:10.1175/2010MWR3255.1

    Article  Google Scholar 

  • Jung T, Palmer T, Rodwell M, Serrar S (2010c) Understanding the anomalously cold European winter of 2005/06 using relaxation experiments. Mon Weather Rev 138(8):3157–3174. doi:10.1175/2010MWR3258.1

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

  • Karoly DJ (1989) Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2(11):1239–1252. doi:10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2

  • Kidson JW (1999) Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses. J Clim 12(9):2808–2830. doi:10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2

  • L’Heureux ML, Thompson DW (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19(2):276–287. doi:10.1175/JCLI3617.1

  • Lu J, Zhao B (2012) The role of oceanic feedback in the climate response to doubling CO2. J Clim 25(21):7544–7563. doi:10.1175/JCLI-D-11-00712.1

    Article  Google Scholar 

  • Lu J, Chen G, Frierson DM (2008) Response of the zonal mean atmospheric circulation to El Niño versus global warming. J Clim 21(22):58355851. doi:10.1175/2008JCLI2200.1

  • Lu J, Sun L, Wu Y, Chen G (2013) The role of subtropical irreversible PV mixing in the zonal mean circulation response to global warming-like thermal forcing. J Clim 27(6):22972316. doi:10.1175/JCLI-D-13-00372.1

  • Madec G (2008) NEMO ocean engine. Note du Pole de modelisation, Institut Pierre Simon Laplace (ISPL) Tech Rep 27 p

  • Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16(24):4134–4143. doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2

  • Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys Res Lett 31(14):14205. doi:10.1029/2004GL019952

  • Miller R, Schmidt G, Shindell D (2006) Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. J Geophys Res 111(D18):D18101. doi:10.1029/2005JD006323

  • Mo KC (2000) Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J Clim 13(20):3599–3610. doi:10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2

  • Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22(1):71–92, doi:10.1175/2008JCLI2261.1

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407–4453. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Richter I, Xie S (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598. doi:10.1007/s00382-008-0364-z

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E et al (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. Max Planck Institute for Meteorology Rep 349p

  • Screen JA, Gillett NP, Karpechko AY, Stevens DP (2010) Mixed layer temperature response to the Southern Annular Mode: mechanisms and model representation. J Clim 23(3):664–678. doi:10.1175/2009JCLI2976.1

    Article  Google Scholar 

  • Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16(18):2960–2978. doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2

  • Sen Gupta A, England MH (2007) Coupled ocean-atmosphere feedback in the Southern Annular Mode. J Clim 20(14):3677–3692

    Article  Google Scholar 

  • Shindell DT, Schmidt GA (2004) Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys Res Lett 31(18):L18209. doi:10.1029/2004GL020724

  • Staten PW, Rutz JJ, Reichler T, Lu J (2012) Breaking down the tropospheric circulation response by forcing. Clim Dyn 39(9–10):2361–2375. doi:10.1007/s00382-011-1267-y

    Article  Google Scholar 

  • Sun L, Chen G, Lu J (2013) Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J Atmos Sci 70(8):2487–2504. doi:10.1175/JAS-D-12-0298.1

    Article  Google Scholar 

  • Thompson DW, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296(5569):895–899. doi:10.1126/science.1069270

    Article  Google Scholar 

  • Thompson DW, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability*. J Clim 13(5):1000–1016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

  • Thompson DW, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: Trends. J Clim 13(5):1018–1036. doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2

  • Thompson DW, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4(11):741–749. doi:10.1038/ngeo1296

    Article  Google Scholar 

  • Uppala S, Kållberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G et al (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131(612):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Valcke S, Caubel A, Declat D, Terray L (2003) OASIS3 ocean atmosphere sea ice soil. Users guide Prisim project report 2

  • Visbeck M (2009) A station-based Southern Annular Mode index from 1884 to 2005. J Clim 22(4):940–950. doi:10.1175/2008JCLI2260.1

    Article  Google Scholar 

  • Wahl S, Latif M, Park W, Keenlyside N (2009) On the Tropical Atlantic SST warm bias in the Kiel Climate Model. Clim Dyn 33(6):174. doi:10.1007/s00382-009-0690-9

    Google Scholar 

  • Wang B, Ding Q, Fu X, Kang I, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32(15):L15,711, doi:10.1029/2005GL022734

  • Wu R, Kirtman B (2005) Roles of indian and pacific ocean air–sea coupling in tropical atmospheric variability. Clim Dyn 25(2):155–170. doi:10.1007/s00382-005-0003-x

    Article  Google Scholar 

  • Wu R, Kirtman B (2007) Regimes of seasonal air–sea interaction and implications for performance of forced simulations. Clim Dyn 29(4):393–410. doi:10.1007/s00382-007-0246-9

    Article  Google Scholar 

  • Wu R, Kirtman B, Pegion K (2006) Local air–sea relationship in observations and model simulations. J Clim 19(19):4914–4932. doi:10.1175/JCLI3904.1

    Article  Google Scholar 

  • Zhou T, Yu R (2004) Sea-surface temperature induced variability of the Southern Annular Mode in an atmospheric general circulation model. Geophys Res Lett 31(24):L24,206. doi:10.1029/2004GL021473

Download references

Acknowledgments

This work has been funded by the BMBF MiKlip Project MODINI, by the DFG under ISOLAA (a project within the Priority Programme 1158), and by GEOMAR. We are grateful to the Rechnenzentrum of Universität Kiel for the use of computer time. We thank Mojib Latif and Wonsun Park for making the KCM available for us and to Thomas Jung and Soumia Serrar for providing us with the output from the ECMWF model runs. We are also grateful to ECMWF for the provision of the model and the use of computer facilities to carry out some of the model runs reported here. We thank two anonymous reviewers for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Greatbatch, R.J. & Gollan, G. Tropical impact on the interannual variability and long-term trend of the Southern Annular Mode during austral summer from 1960/1961 to 2001/2002. Clim Dyn 44, 2215–2228 (2015). https://doi.org/10.1007/s00382-014-2299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2299-x

Keywords

Navigation