Skip to main content
Log in

Seychelles coral record of changes in sea surface temperature bimodality in the western Indian Ocean from the Mid-Holocene to the present

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We report fossil coral records from the Seychelles comprising individual time slices of 14–20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990–2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2–5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere–ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean–atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only provides an incomplete picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abram NJ, Gagan MK, McCulloch MT, Chappell J, Hantoro WS (2003) Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301:952–955

    Article  Google Scholar 

  • Abram NJ, Gagan MK, Liu Z, Hantoro WS, McCulloch MT, Suwargadi BW (2007) Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature 445:299–302

    Article  Google Scholar 

  • Abram NJ, McGregor HV, Gagan MK, Hantoro WS, Suwrgadi BW (2009) Oscillations in the southern extent of the Indo-Pacific warm pool during the mid-Holocene. Quat Sci Rev 28:2794–2803

    Article  Google Scholar 

  • Saha M et al (2010). The NCEP climate forecast system reanalysis. Bulletin American Meteorological Society, pp 1015–1057

  • Allan RJ, Reason CJC, Lindesay JA, Ansell TJ (2003) Protracted’ ENSO episodes and their impacts in the Indian Ocean region. Deep Sea Res II 50:2331–2347

    Article  Google Scholar 

  • Andersen MB, Stirling CH, Zimmermann B, Halliday AN (2010) Precise determination of the open ocean 234U/238U composition. Geochem Geophys Geosyst 11(12). doi:10.1029/2010GC003318

  • Ashok K, Nakamura H, Yamagata T (2007) Impacts of ENSO and Indian Ocean Dipole events on the southern hemisphere storm-track activity during austral winter. J Clim 20:3147–3163

    Article  Google Scholar 

  • Berger A (1978) Long-term variations of daily insolation and quaternary climate changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterschmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results pf PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Clim Past 3:279–296

    Article  Google Scholar 

  • Braconnot P, Marzin C, Gregoire L, Mosquet E, Marti O (2009) Monsoon response to changes in Earth’s orbital parameters: comparison between simulations of the Eemian and of the Holocene. Clim Past 4:281–294

    Article  Google Scholar 

  • Brown J, Collins M, Tudhope AW, Toniazzo T (2008a) Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Clim Dyn 30:19–36

    Article  Google Scholar 

  • Brown J, Tudhope AW, Collins M, McGregor HV (2008b) Mid-Holocene ENSO: issues in quantitive model-proxy data comparison. Paleoceanography 23. doi:10.1029/2007PA001512

  • Cai W, Sullivan A, Cowan T (2009) Climate change contributes to more frequent consecutive positive Indian Ocean Dipole events. Geophys Res Lett 36. doi:10.1029/2009GL040163

  • Camberlin P, Moron V, Okoola R, Philippon N, Gitau W (2009) Components of rainy seasons’ variability in equatorial East Africa: onset, cessation, rainfall frequency and intensity. Theor Appl Climatology 98:237–249

    Article  Google Scholar 

  • Charles CD, Hunter DE, Fairbanks RG (1997) Interaction between the ENSO and the Asian Monsoon in a coral record of tropical climate. Science 277:925–928

    Article  Google Scholar 

  • Chen H, Edwards RL, Wang Y, Kong X, Ming Y, Kelly MJ, Wang X, Gallup CD (2006) A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology 34:217–220

    Article  Google Scholar 

  • Cheng H, Adkins J, Edwards RL, Boyle EA (2000) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64:2401–2416

    Article  Google Scholar 

  • Clemens S, Prell W, Murray D, Shimmield G, Weedon G (1991) Forcing mechanisms of the Indian Ocean monsoon. Nature 353:720–725

    Article  Google Scholar 

  • Cobb KM, Charles CD, Cheng H, Kastner M, Edwards RL (2003) U/Th-dating living and young fossil corals from the central tropical Pacific. Earth Planet Sci Lett 210:91–103

    Article  Google Scholar 

  • Corrège T (2006) Sea surface temperature and salinity reconstructions from coral geochemical tracers. Palaeogeogr Palaeoclimatol Palaeoecol 232:408–428

    Article  Google Scholar 

  • Corrège T, Delcroix T, Récy J, Beck W, Cabioch G, Cornec FL (2000) Evidence for stronger El Nino-Southern Oscillation (ENSO) events in a mid-Holocene massive coral. Paleoceanography 15:465–470

    Article  Google Scholar 

  • DeLong KL, Quinn TM, Taylor FW (2007) Reconstructing twentieth-century sea surface temperature variability in the southwest Pacific: a replication study using multiple coral Sr/Ca records from New Caledonia. Paleoceanography 22:PA412. doi:10.1029/2007PA001444

  • DeLong KL, Flannery J, Maupin CR, Poore RZ, Quinn TM (2011) A coral Sr/Ca calibration and replication study of two massive corals from the Gulf of Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 307:117–128

    Article  Google Scholar 

  • Felis T, Lohmann G, Kuhnert H, Lorenz SJ, Scholz D, Paetzold J, Al-Rousan SA, Al-Moghrabi SM (2004) Increased seasonality in Middle East temperatures during the last interglacial period. Nature 429:164–168

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian Monsoon record in a stalagmite from Southern Oman. Science 300:1737–1739

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188

    Article  Google Scholar 

  • Foltz GR, Vialard J, Praveen Kumar B, McPhaden MJ (2010) Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean. J Clim 23:947–965

    Article  Google Scholar 

  • Fruitjer C, Elliott T, Schlager W (2000) Mass-spectrometric 234U-230Th ages from the Key Largo Formation, Florida Keys, United States: constraints on diagenetic age disturbance. GSA Bull 112:267–277

    Article  Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31. doi:10.1019/2004GL019733

  • Gaetani GA, Cohen AL, Wang Z, Crusius J (2011) Rayleigh-based, multi-element coral thermometry: a biomineralization approach to developing climate proxies. Geochim Cosmochim Acta 75:1920–1932

    Article  Google Scholar 

  • Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, McCulloch MT, Head MJ (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science 279:1014–1018

    Article  Google Scholar 

  • Giry C, Felis T, Koelling M, Scholz D, Wei W, Lohmann G, Scheffers S (2012) Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth and Planetary Science Letters 331–332:187–200

    Article  Google Scholar 

  • Goddard L, Graham NE (1999) Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J Geophys Res 104:19099–19116

    Article  Google Scholar 

  • Goswami P, Sijikumar S, Mandal A (2005) Seasonal cycle and intraseasonal oscillations in the interannual variability over the monsoon region. Geophys Res Lett 32. doi:10.1029/2004GL022171

  • Harrison DE, Vecchi GA (2001) January 1999 Indian Ocean cooling event. Geophys Res Lett 28:3717–3720

    Article  Google Scholar 

  • Hastenrath S, Greischar L (1993) The monsoonal heat budget of the hydrosphere-atmosphere system in the Indian Ocean sector. J Geophys Res 98(C4):6869–6881

    Article  Google Scholar 

  • Hastenrath S, Polzin D (2005) Mechanisms of climate anomalies in the equatorial Indian Ocean. J Geophys Res 110. doi:10.1029/2004JD004981

  • Hermes JC, Reason CJC (2008) Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J Geophys Res 113. doi:10.1029/2007JC004363

  • Hu Y, Li D, Liu J (2007) Abrupt seasonal variation of the ITCZ and the Hadley circulation. Geophys Res Lett 34. doi:10.1029/2007GL030950

  • Hugh MJ (2004) Near-surface zonal flow and East African precipitation receipt during austral summer. J Clim 17:4070–4079

    Article  Google Scholar 

  • Indeje M, Semazzi FHM, Ogallo LJ (2000) ENSO signals in East African rainfall seasons. Int J Climatol 20:19–46

    Article  Google Scholar 

  • Israelson C, Wohlfarth B (1999) Timing of the last interglacial high sea level on the Seychelles Islands, Indian Ocean. Quat Res 51:306–316

    Article  Google Scholar 

  • Joseph S, Sahai AK, Goswami BN (2009) Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim Dyn 32:1139–1153

    Article  Google Scholar 

  • Joussaume S, Taylor KE (1995) Status of the Paleoclimate Modeling Inter- 398 comparison Project (PMIP). In: Proceedings of the first international 399 AMIP scientific conference, WCRP-92, Monterey, pp 425–430

  • Juillet-Leclerc A, Schmidt G (2001) A calibration of the oxygen isotope paleothermometer of coral aragonite from Porites. Geophys Res Lett 28:4135–4138

    Article  Google Scholar 

  • Jung SJA, Davies GR, Ganssen GM, Kroon D (2004) Synchronous Holocene sea surface temperature and rainfall variations in the Asian monsoon system. Quat Sci Rev 23:2207–2218

    Article  Google Scholar 

  • Koutavas A, deMenocal PB, Olive GC, Lynch-Stieglitz J (2006) Mid-Holocene El Nino-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34:993–996

    Article  Google Scholar 

  • Kroon D, Ganssen G (1989) Northern Indian Ocean upwelling cells and stable isotope composition of living planktonic foraminifera. Deep Sea Res I 36:1219–1236

    Article  Google Scholar 

  • Laepple T, Lohmann G (2009) Seasonal cycle as template for climate variability on astronomical timescales. Paleoceanography 24. doi:10.1029/2008PA001674

  • Levitus S, Boyer T, Conkright M, O’Brian T, Antonov J, Stephens C, Gelfeld SLJDR (1998) World Ocean Data Base. NOAA Atlas, NESDID18

  • Li Y, Harrison SPS (2008) Simulations of the impact of orbital forcing and ocean on the Asian summer monsoon during the Holocene. Global Planet Change 60:505–522

    Article  Google Scholar 

  • Li Z, Leighton HG (1993) Global climatology of the solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J Geophy Res:Atmos 98:4919–4930

    Article  Google Scholar 

  • Liu Z, Harrison SP, Kutzbach J, Otto-Bliesner B (2003a) Global monsoons in the mid-Holocene and oceanic feedbacks. Clim Dyn 22:157–182

    Article  Google Scholar 

  • Liu Z, Brady E, Lynch-Stieglitz J (2003b) Global ocean response to orbital forcing in the Holocene. Paleoceanography 18. doi:10.1029/2002PA000819

  • Lough JM (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr Palaeoclimatol Palaeoecol 204:115–143

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation27, Institut Pierre-Simon Laplace, p 193

  • McGregor HV, Gagan MK (2004) Western Pacific coral d18O records of anomalous Holocene variability in the El Nino-Southern Oscillation. Geophys Res Lett 31. doi:10.1029/2004GL019972

  • McPhaden MJ, Zebiak SE, Glantz MG (2006) ENSO as an integrating concept in Earth Science. Science 314:1740–1745

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162–165

    Article  Google Scholar 

  • Nagura M, Sasaki W, Tozuka T, Luo JJ, Behera S, Yamagata T (2013) Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models. J Geophys Res 118. doi:10.1029/2012JC008352

  • Nothdurft LD, Webb GE, Bostrom TE, Rintoul L (2007) Calcite-filled borings in the most recently deposited skeleton in live-collected Porites (Scleractinia): implications for trace element archives. Geochimica et Cosmochimica Acta 71:5423–5438

    Google Scholar 

  • Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time series analysis. Eos Trans AGU 77:379

    Article  Google Scholar 

  • Park W, Keenlyside N, Latif M, Stroeh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22:71–92

    Article  Google Scholar 

  • Pfeiffer M, Dullo W-Ch (2006) Monsoon-induced cooling of the western equatorial Indian Ocean as recorded in coral oxygen isotopes records from the Seychelles covering the period 1840-1994 AD. Quat Sci Rev 25:993–1009

    Article  Google Scholar 

  • Pfeiffer M, Dullo W-C, Zinke J, Garbe-Schönberg D (2009) Three monthly coral Sr/Ca records from the Chagos Archipelago covering the period of 1950–1995 A.D.: reproducibility and implications for quantitative reconstructions of sea surface temperature variations. Int J Earth Sci 98. doi:10.007/s00531-008-0326-z

  • Qi Y, Zhang R, Li T, Wen M (2008) Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophys Res Lett 35. doi:10.1029/2008GL034517

  • Quinn TM, Taylor FW, Crowley TJ, Link SM (1996) Evaluation of sampling resolution in coral stable isotope records: a case study using records from New Caledonia and Tarawa. Paleoceanography 11:529–542

    Article  Google Scholar 

  • Renssen H, Brovkin V, Fichefet T, Goosse H (2003) Holocene climate instability during the termination of the African Humid Period. Geophys Res Lett 30. doi:10.1029/2002GL016636

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Roeckner et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology Rep. 349, p 127. (Available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany)

  • Saith N, Slingo J (2006) The role of the Maddem-Julian Oscillation in the El Nino and Indian drought of 2002. Int J Climatol 26:1361–1378

    Article  Google Scholar 

  • Saji HH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Salau O, Schneider B, Park W, Khon V, Latif M (2012) Modeling the ENSO impact of orbitally induced mean state climate changes. J Geophys Res 117:C05043. doi:10.1029/2011JC007742

    Google Scholar 

  • Schneider B, Leduc G, Park W (2010) Disentangling seasonal signals in Holocene climate trends by satellite-model-data integration. Paleoceanography 25. doi:10.1029/2009PA001893

  • Schrag D (1999) Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14:97–102

    Article  Google Scholar 

  • Sepulcre S, Durand N, Bard E (2009) Mineralogical determination of reef and periplatform carbonates: calibration and implications for paleoceanography and radiochronology. Global Planet Change 66(1–2):1–9

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2003) Extended reconstruction of Global Sea Surface temperatures based on COADS data (1854-1997). J Clim 16:1495–1510

    Article  Google Scholar 

  • Tierney JE, Russell JM, Huang Y, Damste JSS, Hopmans EC, Cohen AS (2008) Northern Hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322:252–255

    Article  Google Scholar 

  • Tierney J, Lewis SC, Cook BI, LeGrande AN, Schmidt GA (2011) Model, proxy and isotopic perspectives on the East African Humid Period. Earth Planet Sci Lett 307:103–112

    Article  Google Scholar 

  • Timm O, Timmermann A, Abe-Ouchi A, Saito F, Segawa T (2008) On the definition of seasons in paleoclimate simulations with orbital forcing. Paleoceanography 23. doi:10.1029/2007PA001461

  • Tiwari M, Ramesh R, Somayajulu BLK, Jull AJT, Burr GS (2006) Paleomonsoon precipitation deduced from a sediment core from the equatorial Indian Ocean. Geo-Mar Lett 26:23–30

    Article  Google Scholar 

  • Tozuka T, Yokoi T, Yamagata T (2010) A modeling study of interannual variations of the Seychelles Dome. J Geophy Res 115. doi:10.1029/2009JC005547

  • Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Nino-Southern Oscillation through a glacial-interglacial cycle. Science 291:1511–1517

    Article  Google Scholar 

  • Ummenhofer CC, Gupta AS, England MH, Reason CJ (2009) Contributions of Indian Ocean sea surface temperatures to enhanced East African rainfall. J Clim 22:993–1013

    Article  Google Scholar 

  • Valcke S (ed) (2006) OASIS3 user guide. PRISM technical report vol 3, p 64. http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf

  • Vecchi GA, Harrison DE (2004) Interannual Indian Rainfall variability and Indian Ocean sea surface temperature anomlaies. In: Wang C, Xie SP, Carton JA (eds) Earth climate: the ocean-atmosphere interaction, vol 147. AGU Geophysical Monograph Series, pp 247–259

  • Verschuren D, Sinninghe-Damste JS, Moernaut J, Kristen I, Blaauw M, Fagot M, Haug GH, Members CP (2009) Half-precession dynamics of monsoon rainfall near the East African Equator. Nature 462:637–641

    Article  Google Scholar 

  • Villiers SD, Greaves M, Elderfield H (2002) An intensity ration calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochem Geophys Geosyst 3. doi:10.1029/2001GC000169

  • Wang P, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian Z, Kershaw P, Sarnthein M (2005a) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24:595–629

    Article  Google Scholar 

  • Wang Y, Cheng H, Lawrence-Edwards R, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005b) The Holocene Asian Monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Woodroffe CD, Beech MR, Gagan MK (2003) Mid-late Holocene El Nino variability in the equatorial Pacific from coral microatolls. Geophys Res Lett 30. doi:10.1029/2002GL015868

  • Yokoi T, Tozuka T, Yamagata T (2012) Seasonal and interannual variations of the SST above the Seychelles Dome. J Clim 25:800–814

    Article  Google Scholar 

  • Zhao Y, Braconnot P, Marti O, Harrison SP, Hewitt C, Kitoh A, Liu Z, Mikolajewicz U, Otto-Bliesner B, Weber SL (2005) A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Clim Dyn 25. doi:10.1007/s00382-005-0075-7

  • Zinke J, Pfeiffer M, Timm O, Dullo W.-C, Brummer GJA (2009) Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660. Int J Earth Sci 98. doi:10.1007/s00531-008-0365-5

Download references

Acknowledgments

This research was funded by the European Union Research and Training Network STOPFEN. We thank the Seychelles Centre for Marine Research and Technology for support in fieldwork logistics and for organising the CITES permit. We thank the two anonymous reviewers for their very constructive comments. We also thank the team of the EU-TESTREEF programme who sampled the corals La Digue. Saskia Kaars produced and processed the SEM pictures processed at the VU University Amsterdam (NL). Uwe Wollenberg and Jean-Marie Nachtigal are thanked for XRD-analyses at RWTH Aachen University, and Karin Kissling for help with ICP-OES analyses at CAU Kiel (Germany). We thank the M. Joachimski from the University of Erlangen (Germany) for the oxygen isotope analysis of the La Digue coral. We thank the Seychelles Centre for Marine Research and Technology for logistical support during fieldwork in 2003. The climate model simulations are contributions from the Cluster of Excellence ‘The Future Ocean’ (EXC-80/1) and the SFB754 ‘Climate-Biogeochemistry Interactions in the Tropical Ocean’, funded by the German Science Foundation (DFG). JZ was supported by an IOMRC AIMS/CSIRO/UWA post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zinke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinke, J., Pfeiffer, M., Park, W. et al. Seychelles coral record of changes in sea surface temperature bimodality in the western Indian Ocean from the Mid-Holocene to the present. Clim Dyn 43, 689–708 (2014). https://doi.org/10.1007/s00382-014-2082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2082-z

Keywords

Navigation