Skip to main content

Advertisement

Log in

Sensitivity of the last glacial inception to initial and surface conditions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Lorius C, Barkov NI (1999) Historical CO2 record from the Vostok ice core. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Department of Energy, U.S., Oak Ridge

  • Berger A (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Berger A (2000) The role of CO2, sea-level and vegetation during the Milankovitch-forced glacial–interglacial cycles. In: Bengtsson L (ed) Geosphere–biosphere interactions and climate. Proceedings of the Workshop held at Pontifical Academy of Sciences

  • Berger A, Loutre MF, Gallée H (1998) Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 kyear. Clim Dyn 14:615–629

    Article  Google Scholar 

  • Bonan G, Pollard D, Thompson S (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8:509–517

    Article  Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles 16(4):1139. DOI 10.1029/2001GB001662

    Google Scholar 

  • Brovkin V, Levis S, Loutre M-F, Crucifix M, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V (2003) Stability analysis of the climate-vegetation system in the northern high latitudes. Clim Change 57:119–138

    Article  Google Scholar 

  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Lett 29:2216. DOI 10.1029/2002GL016078

    Google Scholar 

  • Calov R, Ganopolski A, Claussen M, Petoukhov V, Greve R (2005a) Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Clim Dyn 24(6):545–561. DOI 10.1007/s00382-005-0007-6

    Google Scholar 

  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Brovkin V, Kubatzki C (2005b) Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Clim Dyn 24(6):563–576. DOI 10.1007/s00382-005-0008-5

    Google Scholar 

  • Chappell J, Omura A, Esat T, McCulloch M, Pandolfi J, Ota Y, Pillans B (1996) Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet Sci Lett 141:227–236

    Article  Google Scholar 

  • Clark PU, Clague JJ, Curry BB, Dreimanis A, Hicock SR, Miller SR, Miller GH, Berger GW, Eyles N, Lamothe M, Miller BB, Mott RJ, Oldale RN, Stea RR, Szabo JP, Thorleifson LH, Vincent J-S (1993) Initiation and development of the Laurentide and Cordilleran ice sheets following the last interglaciation. Quaternary Sci Rev 12:79–114

    Article  Google Scholar 

  • Claussen M (2001) Biogeophysical feedbacks and the dynamics of climate. In: Schulze ED, Harrison SP, Heimann M, Holland EA, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 61–71

    Chapter  Google Scholar 

  • Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur H-J (1999) Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys Res Lett 26(14):2037–2040

    Article  Google Scholar 

  • Crowley TJ, Baum SK (1995) Is the Greenland ice sheet bistable? Paleoceanogr Curr 10(3):357–363

    Article  Google Scholar 

  • Crucifix M, Loutre MF (2002) Transient simulations over the last interglacial period (126–115 kyear BP): feedback and forcing analysis. Clim Dyn 19:417–433

    Article  Google Scholar 

  • Cuffey KM, Marshall SJ (2000) Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 406:591–594

    Article  Google Scholar 

  • De Noblet NI, Prentice IC, Joussaume S, Texier D, Botta A, Haxeltine A (1996) Possible role of atmosphere–biosphere interactions in triggering the last glaciation. Geophys Res Lett 23(22):3191–3194

    Article  Google Scholar 

  • Dong B, Valdes PJ (1995) Sensitivity studies of northern hemisphere glaciation using an atmospheric general circulation model. J Clim 8:2471–2496

    Article  Google Scholar 

  • Gallimore RG, Kutzbach JE (1996) Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381:503–505

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M (1998a) Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391:351–356

    Article  Google Scholar 

  • Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998b) The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene. Science 280:1916–1919

    Article  Google Scholar 

  • Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17:735–751

    Article  Google Scholar 

  • Greve R (1997) A continuum-mechanical formulation for shallow polythermal ice sheets. Philos Trans R Soc Lond A355:921–974

    Article  Google Scholar 

  • Harvey LDD (1989) Milankovitch forcing, vegetation feedback, and North Atlantic deep-water formation. J Clim 2:800–815

    Article  Google Scholar 

  • Kageyama M, Charbit S, Ritz C, Khodri M, Ramstein G (2004) Quantifying ice-sheet feedbacks during the last glacial inception. Geophys Res Lett 31:L24203. DOI 10.1029/2004GL021339

    Google Scholar 

  • Khodri M, Leclainche Y, Ramstein G, Braconnot P, Marti O, Cortijo E (2001) Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410:570–574

    Article  PubMed  Google Scholar 

  • Kubatzki C, Montoya M, Rahmstorf S, Ganopolski A, Claussen M (2000) Comparison of a coupled global model of intermediate complexity and an AOGCM for the last interglacial. Clim Dyn 16:799–814

    Article  Google Scholar 

  • Marshall SJ, Clarke GKC (1999) Ice sheet inception: subgrid hypsometric parameterization of mass balance in an ice sheet model. Clim Dyn 15:533–550

    Article  Google Scholar 

  • Meissner KJ, Weaver AJ, Matthews HD, Cox PJ (2003) The role of land-surface dynamics in glacial inception: a study with the UVic Earth system model. Clim Dyn 21(7–8):515–537

    Article  Google Scholar 

  • North Greenland Ice Core Project members (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16:1–17

    Article  Google Scholar 

  • Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben Ch, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  PubMed  Google Scholar 

  • Stirling CH, Esat TM, Lambeck K, McCulloch MT (1998) Timing and duration of the last interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet Sci Lett 160:745–762

    Article  Google Scholar 

  • Stocker T, Wright D, Mysak L (1992) A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J Clim 5:773–797

    Article  Google Scholar 

  • Vettoretti G, Peltier WR (2003) Post-Eemian glacial inception. Part I: the impact of summer seasonal temperature bias. J Clim 16(6):889–911

    Article  Google Scholar 

  • Vettoretti G, Peltier WR (2004) Sensitivity of glacial inception to orbital and greenhouse gas climate forcing. Quaternary Sci Rev 23:499–519

    Article  Google Scholar 

  • Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Sci Rev 21:295–305

    Article  Google Scholar 

  • Wang Z, Mysak LA (2002) Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophys Res Lett 29(23):2102. DOI 10.1029/2002GL015120

    Google Scholar 

  • Yoshimori M, Reader MC, Weaver AJ, McFarlane NA (2002) On the causes of glacial inception at 116 ka BP. Clim Dyn 18:383–402

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ralf Greve for providing us with the ice-sheet model SICOPOLIS. The authors would like to thank Alexandra Jahn for technical assistance. The work was funded by a subcontract to project 01LD0041 (DEKLIM-EEM) of the Bundesministerium für Bildung und Forschung (BMBF) and it was partly funded by the Deutsche Forschungsgemeinschaft (DFG) project CL 178/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Kubatzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubatzki, C., Claussen, M., Calov, R. et al. Sensitivity of the last glacial inception to initial and surface conditions. Clim Dyn 27, 333–344 (2006). https://doi.org/10.1007/s00382-006-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-006-0136-6

Keywords

Navigation