Skip to main content

Advertisement

Log in

Stability of the glacial thermohaline circulation and its dependence on the background hydrological cycle

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Different reconstructions of glacial sea-surface temperatures (SST) are used to force a hybrid coupled atmosphere–ocean model. The resulting glacial states differ in global salinity and temperature distributions, and consequently in the strength of the thermohaline circulation. Stability analysis of the Atlantic Ocean circulation, by means of freshwater-flux hysteresis maps, reveals mono-stability for each glacial background state, which appears to be a robust feature of the glacial ocean. We show that this behaviour is directly linked to the hydrological cycle. A monotonic relation between the freshwater input necessary for reaching the off-mode and the hydrological budget in the Atlantic catchment area, accounts for the sensitivity of the ocean’s circulation. The most sensitive part of the hydrological balance appears to be in the tropical and subtropical regions suggesting that the ‘Achilles heel’ of the global conveyor belt circulation is not restricted to the northern North Atlantic where convection occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature and δ18O content of the glacial deep ocean. Science 298: 1769–1773

    Article  CAS  PubMed  Google Scholar 

  • Bickert T, Mackensen A (2003) Last Glacial to Holocene Changes in South Atlantic deep water circulation. In: The South Atlantic in the Quaternary Reconstruction of material budget and current systems. Wefer G, Mulitza S, Rathmeyer V, . Springer, Berlin Heidelberg, pp 599–620

  • Boyle EA (1992) Cadmium and δ13C paleochemical ocean distribution during the stage 2 glacial maximum. Ann Rev Earth Planet Sci 20: 245–287

    CAS  Google Scholar 

  • Boyle EA, Keigwin LD (1987) North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330: 35–40

    CAS  Google Scholar 

  • Broecker WS, Hemming S (2001) Climate swings come into focus. Science 294: 2308–2309

    Article  CAS  PubMed  Google Scholar 

  • Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323: 301–304

    CAS  Google Scholar 

  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Let 29: 2216, doi:10.1029/2002GL016078

  • Chappell J (2002) Sea level changes forced ice breakouts in the Last Glacial cycle: new results from coral terraces. Quat Sci Rev 21: 1229–1240

    Article  Google Scholar 

  • Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415: 863–869

    Article  CAS  PubMed  Google Scholar 

  • CLIMAP project members (1981) Seasonal reconstructions of the Earth surface at the Last Glaial Maximum. Geological Society of America Map and Chart Series, MC-36, 18 maps, Boulder, Colorado, USA

  • de Vernal A, Hillaire-Marcel C (2000) Sea-ice cover, sea-surface salinity and halo-/thermocline structure of the northwest North Atlantic: modern versus full glacial conditions. Quat Sci Rev 19: 65–68

    Google Scholar 

  • Duplessy JC, Shackelton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3: 343–360

    Google Scholar 

  • Duplessy JC, Labeyrie L, Juillet-Leclerc A, Maitre F, Duprat J, Sarnthein M (1991) Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanologica Acta 14: 311–324

    CAS  Google Scholar 

  • Fanning AF, Weaver AJ (1997) Temporal-geographical meltwater influences on the North Atlantic conveyor: implications for the Younger Dryas. Paleoceanography 12: 307–320

    Article  Google Scholar 

  • Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ, Bonnefille R, Bush M, Cramer W, von Grafenstein U, Holmgren K, Hooghiemstra H, Hope G, Jolly D, Lauritzen SE, Ono Y, Pinot S, Stute M, Yu G (1999) Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial paleoclimate data. I. Vegetation, lake-levels and geochemistry. Clim Dyn 15: 823–856

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Simulation of rapid glacial climate change in a coupled climate model. Nature 409: 153–158

    CAS  PubMed  Google Scholar 

  • Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91: 5037–5046

    Google Scholar 

  • Hewitt CD, Broccoli AJ, Mitchell JFB, Stouffer RJ (2001) A coupled model study of the last glacial maximum: was part of the North Atlantic relatively warm? Geophys Res Lett 28: 1571–1574

    Article  Google Scholar 

  • Kitoh A, Murakami FS, Koide H (2001) A simulation of the Last Glacial Maximum with a coupled atmosphere-ocean GCM. Geophys Res Lett 28: 2221–2224

    Article  Google Scholar 

  • Knorr G, Lohmann G (2003) Southern Ocean origin for resumption of Atlantic thermohaline circulation during deglaciation. Nature 424: 532–536

    Article  CAS  PubMed  Google Scholar 

  • Latif M, Roeckner E, Mikolajewicz, Voss R (2000) Tropical stabilization of the thermohaline circulation in a Greenhouse warming simulation. J Clim 13: 1809–1813

    Article  Google Scholar 

  • Lautenschlager M, Mikolajewicz U, Maier-Reimer E, Heinze C (1992) Application of ocean models for the interpretation of the atmospheric general circulation model experiments on the climate of the Last Glacial Maximum. Paleoceanography 7: 769–782

    Google Scholar 

  • Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstraem interpolation. Comput Meth Appl Mech Eng 19: 59–98

    Article  Google Scholar 

  • Lohmann G (2003) Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation. Tellus 55A: 438–449

    Google Scholar 

  • Lohmann G, Lorenz S (2000) On the hydrological cycle under paleoclimatic conditions as derived from AGCM simulations. J Geophys Res 105: 17,417–17,436

    Google Scholar 

  • Lohmann G, Gerdes R, Chen D (1996a) Sensitivity of the thermohaline circulation in coupled oceanic GCM-atmospheric EBM experiments. Clim Dyn 12: 403–416

    Article  Google Scholar 

  • Lohmann G, Gerdes R, Chen D (1996b) Stability of the thermohaline circulation in a simple coupled model. Tellus 48A: 465–476

    Google Scholar 

  • Maier-Reimer E, Mikolajewicz U (1989) Experiments with an OGCM on the cause of the Younger Dryas. Tech. Rep. 39, Max-Planck-Inst for Meteorol, Hamburg, pp 13

  • Maier-Reimer E, Mikolajewicz U, Hasselmann K (1993) Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J Phys Oceanogr 23: 731–757

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378: 165–167

    CAS  Google Scholar 

  • Marchitto TM, Oppo DW, Curry WB (2002) Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic. Paleoceanography 17: 1038, doi:10.1029/2000PA000PA000598

  • Mikolajewicz U, Maier-Reimer E (1994) Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J Geophys Res 99: 22,633–22,644

    Article  Google Scholar 

  • Mix AC, Bard E, Schneider R (2001) Environmental processes of the Ice Age: land, ocean, glaciers (EPILOG). Quat Sci Rev 20: 627–657

    Article  Google Scholar 

  • Paul A, Schäfer-Neth C (2003) Modeling the water masses of the Atlantic Ocean at the Last Glacial Maximum. Paleoceanography 18(3): 1058, doi:10.1029/2002PA000783

  • Peltier WR (1994) Ice age paleotopography. Science 265: 195–201

    Google Scholar 

  • Prange M, Lohmann G, Gerdes R (1997) Sensitivity of the thermohaline circulation for different climates – investigations with a simple atmosphere-ocean model. Palaeoclimates 2: 71–99

    Google Scholar 

  • Prange M, Romanova V, Lohmann G (2002) The glacial thermohaline circulation: stable or unstable? Geophys Res Lett 29: 2028, doi:10.1029/2002GL015337

  • Prange M, Lohmann G, Romanova V, Butzin M (2004) Modelling tempo-spatial signatures of Heinrich Events: influence of the climatic background state. Quat Sci Rev 23:521–527

    Article  Google Scholar 

  • Prange M, Lohmann G, Paul A (2003) Influence of vertical mixing on the thermohaline hysteresis: analyses of an OGCM. J Phys Oceanogr 33: 1707–1721

    Google Scholar 

  • Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378: 145–149

    CAS  Google Scholar 

  • Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12: 799–811

    Article  Google Scholar 

  • Rahmstorf S, Willebrand J (1995) The role of temperature feedback in stabilizing the thermohaline circulation. J Phys Oceanogr 25: 787–805

    Article  Google Scholar 

  • Rind D, deMenocal P, Russell G, Sheth S, Collins D, Schmidt GA, Teller J (2001) Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part I: North Atlantic Deep Water response. J Geophys Res 106: 27,335–27,354

    Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the present-day climate with ECHAM model: impact of model physics and resolution, S. 28, Hamburg, Germany, pp 171

  • Rühlemann C, Mulitza S, Lohmann G, Paul A, Prange M, Wefer G (2004) Intermediate-depth warming in the tropical Atlantic related to weakened thermohaline circulation: combining paleoclimate and modeling data for the last deglaciation. Paleoceanography 19. Doi:1029/2003PA0000948

  • Rutberg RL, Hemming SR, Goldstein SL (2000) Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405: 935–938

    Article  CAS  PubMed  Google Scholar 

  • Saenko O, Gregory JM, Weaver AJ, Eby M (2002) Distinguishing the influence of heat, freshwater, and momentum fluxes on ocean circulation and climate. Clim Dyn 15: 3686–3697

    Article  Google Scholar 

  • Sarnthein M, Gersonde R, Niebler S, Pflaumann U, Spielhagen R, Thiede J, Wefer G, Weinelt M (2003) Overview of Glacial Atlantic Ocean Mapping (GLAMAP 2000). Paleoceanography 18: 1030, doi:10.1029/2002PA000769

  • Schäfer-Neth C, Paul A (2001) Circulation of the glacial Atlantic: a synthesis of global and regional modeling. In: The Northern North Atlantic: A Changing Environment. Schäfer IP, Ritzrau W, Schlüter M, Thiede J, Springer, Berlin, pp 446–462

    Google Scholar 

  • Schiller A, Mikolajewicz U, Voss R (1997) The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim Dyn 13: 325–347

    Article  Google Scholar 

  • Schmittner A, Clement AC (2002) Sensitivity of the thermohaline circulation to tropical and high latitude freshwater forcing during the last glacial-interglacial cycle. Paleoceanography 17: 10.1029/2000PA000591

    Google Scholar 

  • Schmittner A, Yoshimori M, Weaver AJ (2002) Instability of glacial climate in a model of ocean-atmosphere-cryosphere system. Science 295: 1489–1493

    CAS  PubMed  Google Scholar 

  • Shin S, Liu Z, Otto-Bliesner BL, Brady EC, Kutzbach JE, Harrison SP (2003) A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Clim Dyn 20: 127–151

    Google Scholar 

  • Stocker TF, Wright DG (1991) Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351: 729–732

    Article  Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13: 224–230

    Google Scholar 

  • Volbers ANA, Henrich R (2002) Present water mass calcium carbonate corrosiveness in the eastern South Atlantic inferred from ultrastructural breakdown of Globigerina bulloides in surface sediments. Marine Geology 186:471–486

    Google Scholar 

  • Weaver AJ, Eby M, Fanning AF, Wiebe EC (1998) Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature 394: 847–853

    CAS  Google Scholar 

  • Weinelt M, Sarnthein M, Pflaumann U, Schulz H, Jung S, Erlenkeuser H (1996) Ice-free Nordic Seas during the Last Glacial Maximum? Potential sites of deepwater formation. Palaeoclimates 1: 283–309

    Google Scholar 

  • Winguth AME, Archer D, Maier-Reimer E, Mikolajewicz U, Duplessy JC (1999) Sensitivity of paleonutrient tracer distributions and deep-sea circulation to glacial boundary conditions. Palaeoceanography 14: 304–323

    Article  Google Scholar 

  • Yu EF, Francois R, Bacon MP (1996) Similar rates of modern and last glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379: 689–694

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the comments and suggestions of Andre Paul, Christian Schäfer-Neth and Klaus Grosfeld, and Andreas Manschke and Silke Schubert for technical support. We also thank the reviewers for constructive comments. The study was funded by the BMBF through DEKLIM project Climate transitions and by the Deutsche Forschungsgemeinschaft as a part of the DFG Research Centre ‘Ocean Margins’ of the University of Bremen (No. RCOMO127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Romanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanova, V., Prange, M. & Lohmann, G. Stability of the glacial thermohaline circulation and its dependence on the background hydrological cycle. Climate Dynamics 22, 527–538 (2004). https://doi.org/10.1007/s00382-004-0395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0395-z

Keywords

Navigation