Skip to main content

Advertisement

Log in

Estuary-type circulation as a factor sustaining horizontal nutrient gradients in freshwater-influenced coastal systems

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Estuary-type circulation is a residual circulation in coastal systems with horizontal density gradients. It drives the accumulation of suspended particulate matter in coastal embayments where density gradients are sustained by some freshwater inflow from rivers. Ebenhöh et al. (Ecol Model 174(3):241–252, 2004) found that shallow water depth can explain nutrient gradients becoming established towards the coast even in the absence of river inflow. The present study follows their concept and investigates the characteristic transport of organic matter towards the coast based on idealised scenarios whereby an estuary-type circulation is maintained by surface freshwater fluxes and pronounced shoaling towards the coast. A coupled hydrodynamical and biogeochemical model is used to simulate the dynamics of nutrient gradients and to derive budgets of organic matter flux for a coastal transect. Horizontal nutrient gradients are considered only in terms of tidal asymmetries of suspended matter transport. The results show that the accumulation of organic matter near the coast is not only highly sensitive to variations in the sinking velocity of suspended matter but is also noticeably enhanced by an increase in precipitation. This scenario is comparable with North Sea conditions. By contrast, horizontal nutrient gradients would be reversed in the case of evaporation-dominated inverse estuaries (cf. reverse gradients of nutrient and organic matter concentrations). Credible coastal nutrient budget calculations are required for resolving trends in eutrophication. For tidal systems, the present results suggest that these calculations require an explicit consideration of freshwater flux and asymmetries in tidal mixing. In the present case, the nutrient budget for the vertically mixed zone also indicates carbon pumping from the shelf sea towards the coast from as far offshore as 25 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res I Oceanogr Res Pap 40(6):1131–1140

    Article  Google Scholar 

  • Becherer J, Burchard H, Flöser G, Mohrholz V, Umlauf L (2011) Evidence of tidal straining in well-mixed channel flow from micro-structure observations. Geophys Res Lett 38(17):L17611. doi:10.1029/2011GL049005

    Article  Google Scholar 

  • Bruggeman J, Bolding K (2014) A general framework for aquatic biogeochemical models. Environ Model Software 61:249–265. doi:10.1016/j.envsoft.2014.04.002

    Article  Google Scholar 

  • Burchard H, Badewien TH (2015) Thermohaline residual circulation of the Wadden Sea. Ocean Dyn 65(12):1717–1730

    Article  Google Scholar 

  • Burchard H, Hetland RD (2010) Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries. J Phys Oceanogr 40(6):1243–1262. doi:10.1175/2010JPO4270.1

    Article  Google Scholar 

  • Burchard H, Bolding K, Villarreal MR (2004) Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dyn 54:250–265

    Article  Google Scholar 

  • Burchard H, Flöser G, Staneva JV, Badewien TH, Riethmüller R (2008) Impact of density gradients on net sediment transport into the Wadden Sea. J Phys Oceanogr 38(3):566–587. doi:10.1175/2007JPO3796.1

    Article  Google Scholar 

  • Burchard H, Schuttelaars HM, Geyer WR (2013) Residual sediment fluxes in weakly-to-periodically stratified estuaries and tidal inlets. J Phys Oceanogr 43(9):1841–1861

    Article  Google Scholar 

  • Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66(1/2):3–33. doi:10.1023/B:BIOG.0000006066.21240.53

    Article  Google Scholar 

  • Cloern JE (1987) Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont Shelf Res 7:1367–1381

    Article  Google Scholar 

  • Deek A, Dähnke K, van Beusekom J, Meyer S, Voss M, Emeis K (2013) N2 fluxes in sediments of the Elbe Estuary and adjacent coastal zones. Mar Ecol Prog Ser 493:9–21. doi:10.3354/meps10514

    Article  Google Scholar 

  • Delaney ML (1998) Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Glob Biogeochem Cycles 12(4):563–572. doi:10.1029/98GB02263

    Article  Google Scholar 

  • Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycles 20:GB4003. doi:10.1029/2005GB002672

    Article  Google Scholar 

  • Ebenhöh W, Kohlmeier C, Baretta J, Flöser G (2004) Shallowness may be a major factor generating nutrient gradients in the Wadden Sea. Ecol Model 174(3):241–252. doi:10.1016/j.ecolmodel.2003.07.011

    Article  Google Scholar 

  • Eckart C (1952) The propagation of water waves from deep to shallow water. Natl Bur Stand Circ 20:165–173

    Google Scholar 

  • Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I (2004) Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428(6986):929–932

    Article  Google Scholar 

  • Feser F, Weisse R, von Storch H (2001) Multi-decadal atmospheric modeling for Europe yields multi-purpose data. EOS Trans Am Geophys Union 82(28):305–310. doi:10.1029/01EO00176

    Article  Google Scholar 

  • Fettweis M, Francken F, Van den Eynde D, Verwaest T, Janssens J, Van Lancker V (2010) Storm influence on SPM concentrations in a coastal turbidity maximum area with high anthropogenic impact (southern North Sea). Cont Shelf Res 30(13):1417–1427. doi:10.1016/j.csr.2010.05.001

    Article  Google Scholar 

  • Flöser G, Riethmüller R, Nauw J, Burchard H (2013) Observational evidence for the general presence of estuarine circulation in the Wadden Sea. J Coast Res 65:1527–1532. doi:10.2112/SI65-258.1

    Article  Google Scholar 

  • Frank C, Schroeder F, Ebinghaus R, Ruck W (2006) A fast sequential injection system for the simultaneous determination of ammonia and phosphate. Microchim Acta 154:31–38. doi:10.1007/s00604-006-0496-y

    Article  Google Scholar 

  • Gayer G, Dick S, Pleskachevsky A, Rosenthal W (2006) Numerical modeling of suspended matter transport in the North Sea. Ocean Dyn 56(1):62–77. doi:10.1007/s10236-006-0070-5

    Article  Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol Oceanogr 43(4):679–694

    Article  Google Scholar 

  • Geyer WR, MacCready P (2014) The estuarine circulation. Annu Rev Fluid Mech 46(1):175–197. doi:10.1146/annurev-fluid-010313-141302

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis, 3rd edn. Wiley-VCh, New York

    Book  Google Scholar 

  • Gräwe U, Wolff JO, Ribbe J (2010) Impact of climate variability on an east Australian bay. Estuar Coast Shelf Sci 86(2):247–257. doi:10.1016/j.ecss.2009.11.020

    Article  Google Scholar 

  • Grunwald M, Dellwig O, Kohlmeier C, Kowalski N, Beck M, Badewien TH, Kotzur S, Liebezeit G, Brumsack HJ (2010) Nutrient dynamics in a back barrier tidal basin of the Southern North Sea: time-series, model simulations, and budget estimates. J Sea Res 64(3):199–212. doi:10.1016/j.seares.2010.02.008

    Article  Google Scholar 

  • Hetzel Y, Pattiaratchi C, Lowe R (2013) Intermittent dense water outflows under variable tidal forcing in Shark Bay, Western Australia. Cont Shelf Res 66:36–48. doi:10.1016/j.csr.2013.06.015

    Article  Google Scholar 

  • Jay DA, Musiak JD (1994) Particle trapping in estuarine tidal flows. J Geophys Res 99(C10):20445–20461. doi:10.1029/94JC00971

    Article  Google Scholar 

  • Kondo J (1975) Air–sea bulk transfer coefficients in diabetic conditions. Bound Layer Meteorol 9:91–112

    Article  Google Scholar 

  • Kumar N, Voulgaris G, Warner JC, Olabarrieta M (2012) Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model 47:65–95. doi:10.1016/j.ocemod.2012.01.003

    Article  Google Scholar 

  • Lenhart H-J, Mills DK, Baretta-Bekker H, van Leeuwen SM, van der Molen J, Baretta JW, Blaas M, Desmit X, Kühn W, Lacroix G, Los HJ, Ménesguen A, Neves R, Proctor R, Ruardij P, Skogen MD, Vanhoutte-Brunier A, Villars MT, Wakelin SL (2010) Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea. J Mar Syst 81:148–170. doi:10.1016/j.jmarsys.2009.12.014

    Article  Google Scholar 

  • Lucotte M, D’Anglejan B (1983) Forms of phosphorus and phosphorus-iron relationships in the suspended matter of the St. Lawrence Estuary. Can J Earth Sci 20:1880–1890

    Article  Google Scholar 

  • Maerz J, Hofmeister R, van der Lee EM, Gräwe U, Riethmüller R, Wirtz KW (2016) Evidence for a maximum of sinking velocities of suspended particulate matter in a coastal transition zone. Biogeosci Discuss. doi:10.5194/bg-2015-667

    Google Scholar 

  • Onken R, Riethmüller R (2010) Determination of the freshwater budget of tidal flats from measurements near a tidal inlet. Cont Shelf Res 30(8):924–933. doi:10.1016/j.csr.2010.02.004

    Article  Google Scholar 

  • Painting S, Foden J, Forster R, van der Molen J, Aldridge J, Best M, Jonas P, Hydes D, Walsham P, Webster L, Gubbins M, Heath M, McGovern E, Vincent C, Gowen R, O’Boyle S (2013) Impacts of climate change on nutrient enrichment. MCCIP Sci Rev 2013:219–235. doi:10.14465/2013.arc23.219-235

    Google Scholar 

  • Petersen W, Schroeder F, Bockelmann F-D (2011) FerryBox - Application of continuous water quality observations along transects in the North Sea. Ocean Dyn 61(10):1541–1554. doi:10.1007/s10236-011-0445-0

    Article  Google Scholar 

  • Pritchard D, Hogg A (2003) Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents. J Geophys Res 108:3313. doi:10.1029/2002JC001570

    Article  Google Scholar 

  • Puls W, Bernem KH, Eppel D, Kapitza H, Pleskachevsky A, Riethmüller R, Vaessen B (2011) Prediction of benthic community structure from environmental variables in a soft-sediment tidal basin (North Sea). Helgol Mar Res 66(3):345–361. doi:10.1007/s10152-011-0275-y

    Article  Google Scholar 

  • Schartau M, Engel A, Schröter J, Thoms S, Völker C, Wolf-Gladrow D (2007) Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosci Discuss 4(1):13–67

    Article  Google Scholar 

  • Simpson JH, Brown J, Matthews J, Allen G (1990) Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13(2):125–132. doi:10.2307/1351581

    Article  Google Scholar 

  • Soulsby RL (1997) Dynamics of marine sands. Thomas Telford, London

    Google Scholar 

  • Stacey MT, Brennan ML, Burau JR, Monismith SG (2010) The tidally averaged momentum balance in a partially and periodically stratified estuary. J Phys Oceanogr 40(11):2418–2434. doi:10.1175/2010JPO4389.1

    Article  Google Scholar 

  • Stanev EV, Dobrynin M, Pleskachevsky A, Grayek S, Günther H (2008) Bed shear stress in the southern North Sea as an important driver for suspended sediment dynamics. Ocean Dyn 59(2):183–194. doi:10.1007/s10236-008-0171-4

    Article  Google Scholar 

  • Thomas H, Bozec Y, de Baar HJW, Elkalay K, Frankignoulle M, Schiettecatte LS, Kattner G, Borges AV (2005) The carbon budget of the North Sea. Biogeosciences 2(1):87–96. doi:10.5194/bg-2-87-2005

    Article  Google Scholar 

  • van Beusekom J, Brockmann UH, Hesse KJ, Hickel W, Poremba K, Tillmann U (1999) The importance of sediments in the transformation and turnover of nutrients and organic matter in the Wadden Sea and German Bight. German J Hydrogr 51(2):245–266. doi:10.1007/BF02764176

    Google Scholar 

  • van Beusekom J, Loebl M, Martens P (2009) Distant riverine nutrient supply and local temperature drive the long-term phytoplankton development in a temperate coastal basin. J Sea Res 61(1-2):26–33. doi:10.1016/j.seares.2008.06.005

    Article  Google Scholar 

  • van der Molen J, Bolding K, Greenwood N, Mills DK (2009) A 1-D vertical multiple grain size model of suspended particulate matter in combined currents and waves in shelf seas. J Geophys Res 114:F01030. doi:10.1029/2008JF001150

    Google Scholar 

  • van Engeland T, Soetaert K, Knuijt A, Laane R, Middelburg J (2010) Dissolved organic nitrogen dynamics in the North Sea: a time series analysis (1995-2005). Estuar Coast Shelf Sci 89(1):31–42. doi:10.1016/j.ecss.2010.05.009

    Article  Google Scholar 

  • van Leeuwen S, Tett P, Mills D, van der Molen J (2015) Stratified and nonstratified areas in the North Sea: long-term variability and biological and policy implications. J Geophys Res Oceans 120:4670–4686. doi:10.1002/2014JC010485

    Article  Google Scholar 

  • Winter C, Herrling G, Bartholomä A, Capperucci R, Callies U, Heipke C, Schmidt A, Hillebrand H, Reimers C, Bremer P, Weiler R (2014) Scientific concepts for monitoring the ecological state of German coastal seas (in German). Wasser und Abfall 07–08(2014):21–26. doi:10.1365/s35152-014-0685-7

    Article  Google Scholar 

  • Wu Z, Zhou H, Zhang S, Liu Y (2013) Using 222Rn to estimate submarine groundwater discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea. Mar Pollut Bull 73(1):183–91. doi:10.1016/j.marpolbul.2013.05.024

    Article  Google Scholar 

  • Young IR, Verhagen LA (1996) The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast Eng 29(1-2):47–78. doi:10.1016/S0378-3839(96)00006-3

    Article  Google Scholar 

Download references

Acknowledgments

The work of Richard Hofmeister has been funded by the Lower Saxony Ministries for Science and Culture (MWK) and the Ministry of Environment, Energy and Environmental Protection (MU) through the project WIMO and by the German Federal Ministry of Education and Research (BMBF) through the project MOSSCO. We thank Karsten Bolding and Jorn Bruggeman for maintaining the open-source modelling software FABM, GOTM and GETM. Constructive assessments by three reviewers are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hofmeister.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Additional information

Responsible guest editor: C. Winter

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmeister, R., Flöser, G. & Schartau, M. Estuary-type circulation as a factor sustaining horizontal nutrient gradients in freshwater-influenced coastal systems. Geo-Mar Lett 37, 179–192 (2017). https://doi.org/10.1007/s00367-016-0469-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0469-z

Keywords

Navigation