Skip to main content
Log in

Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay)

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The continental margin off Uruguay and northern Argentina is characterized by high fluvial input by the de la Plata River and a complex oceanographic regime. Here we present first results from RV Meteor Cruise M78/3 of May–July 2009, which overall aimed at investigating sediment transport processes from the coast to the deep sea by means of hydroacoustic and seismic mapping, as well as coring using conventional tools and the new MARUM seafloor drill rig (MeBo). Various mechanisms of sediment instabilities were identified based on geophysical and core data, documenting particularly the continental slope offshore Uruguay to be locus of submarine landsliding. Individual landslides are relatively small with volumes <2km3. Gravitational downslope sediment transport also occurs through the prominent Mar del Plata Canyon and several smaller canyons. The canyons originate at a midslope position, and the absence of buried upslope continuations strongly suggests upslope erosion as main process for canyon evolution. Many other morphological features (e.g., slope-parallel scarps with scour geometries) and abundant contourites in a 35-m-long MeBo core reveal that sediment transport and erosion are controlled predominantly by strong contour currents. Despite numerous landslide events, their geohazard potential is considered to be relatively small, because of their small volumes and their occurrence at relatively deep water depths of more than 1,500 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antobreh AA, Krastel S (2006) Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: a newly discovered canyon preserved off a major arid climatic region. Mar Petrol Geol 23:37–59

    Article  Google Scholar 

  • Antoine D, André JM, Morel A (1996) Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob Biogeochem Cycles 10:43–55

    Article  Google Scholar 

  • Babonneau N, Savoye B, Cremer M, Klein B (2002) Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Mar Petrol Geol 19:445–467

    Article  Google Scholar 

  • Canals M, De Mol B (2009) Results from the European deep ocean margins research training network. Int J Earth Sci 98:715–720

    Article  Google Scholar 

  • Damuth JE (1994) Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Mar Petrol Geol 11:320–346

    Article  Google Scholar 

  • Damuth JE, Kumar N (1975) Amazon cone: morphology, sediments, age and growth pattern. Geol Soc Am Bull 86:873–878

    Article  Google Scholar 

  • de Santa Ana H, Ucha N, Gutiérrez L, Veroslavsky G (2004) Gas hydrates estimation on the gas potential from reflection seismic data in the continental shelf of Uruguay. Revista SUG 11:46–52

    Google Scholar 

  • Farre JA, McGregor BA, Ryan WBF, Robb JM (1983) Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution. In: Stanley DJ, Moore GT (eds) The shelfbreak. Critical interface on continental margins. SEPM Spec Publ 33:25–39

  • Faugères JC, Stow DAV, Imbert P, Viana A (1999) Seismic features diagnostic of contourite drifts. Mar Geol 162:1–38

    Article  Google Scholar 

  • Flood RD, Shor AN (1988) Mud waves in the Argentine Basin and their relationship to regional bottom circulation patterns. Deep-Sea Res 35:943–971

    Article  Google Scholar 

  • Franke D, Neben S, Schreckenberger B, Schulze A, Stiller M, Krawczyk CM (2006) Crustal structure across the Colorado Basin, offshore Argentina. Geophys J Int 165:850–864

    Article  Google Scholar 

  • Freudenthal T, Wefer G (2007) Scientific drilling with the sea floor drill rig MeBo. Sci Drill 5:63–66

    Google Scholar 

  • Freudenthal T, Wefer G (2009) Shallow drilling in the deep sea: the sea floor drill rig MEBO. In: Proc IEEE OCEANS Conf, OCEANS 2009 EUROPE, 11–14 May 2009, Bremen, Germany, pp 180–183. doi:10.1109/OCEANSE.2009.5278133

  • Gilberto DA, Bermec CS, Acha EM, Mianzan H (2004) Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Rio de la Plata estuary and adjacent shelf waters. Estuar Coast Shelf Sci 61:1–13

    Article  Google Scholar 

  • Green AN, Goff JA, Uken R (2007) Geomorphological evidence for upslope canyon-forming processes on the northern KwaZulu-Natal shelf, SW Indian Ocean, South Africa. Geo-Mar Lett 27(6):399–409. doi:10.1007/s00367-007-0082-2

    Article  Google Scholar 

  • Greene HG, Ward SN (2003) Mass movement features along the central California margin and their modeled consequences for tsunami generation. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Advances in natural and technological hazards Research, vol 9. Kluwer, Dordrecht, pp 343–356

    Chapter  Google Scholar 

  • Greene HG, Murai LY, Watts P, Maher NA, Fisher MA, Paull CE, Eichhubl P (2006) Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Nat Hazards Earth Syst Sci 6:63–88

    Article  Google Scholar 

  • Harbitz CB, Løvholt F, Pedersen G, Masson D (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Norw J Geol 86:255–264

    Google Scholar 

  • Heezen BC, Hollister CD, Ruddiman WF (1966) Shaping of the continental rise by deep geostrophic bottom currents. Science 152:502–508

    Article  Google Scholar 

  • Hensen C, Zabel M, Pfeifer K, Schwenk T, Kasten S, Riedinger N, Schulz HD, Boetius A (2003) Control of sulphate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for burial of sulfur in marine sediments. Geochim Cosmochim Acta 67(14):2631–2647

    Article  Google Scholar 

  • Hernández-Molina FJ, Paterlini M, Violante R, Marshall P, de Isasi M, Somoza L, Rebesco M (2009) Contourite depositional system on the Argentine Slope: an exceptional record of the influence of Antarctic water masses. Geology 37:507–510

    Article  Google Scholar 

  • Hinz K, Neben S, Schreckenberger B, Roeser HA, Block M, Goncalves de Souza K, Meyer H (1999) The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup. Mar Petrol Geol 16:1–25

    Article  Google Scholar 

  • Klaus A, Ledbetter MT (1988) Deep-sea sedimentary processes in the Argentine Basin revealed by high-resolution seismic records (3.5 kHz echograms). Deep-Sea Res 35:899–917

    Article  Google Scholar 

  • Krastel S, Schmincke H-U, Jacobs CL (2001) Formation of submarine canyons on the flanks of ocean islands: examples from the Canary Islands. Geo-Mar Lett 20:160–167. doi:10.1007/s003670000049

    Article  Google Scholar 

  • Laberg JS, Camerlenghi A (2008) The significance of contourites for submarine slope stability. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, vol 60. Elsevier, Amsterdam, pp 537–556

    Google Scholar 

  • Lonardi AG, Ewing M (1971) Sediment transport and distribution in the Argentine Basin. 4. Bathymetry of the continental margin. Argentine Basin and other related provinces. Canyons and sources of sediments. In: Physics and chemistry of the earth, vol 8. Pergamon Press, Oxford, pp 79–121

  • Lykousis V, Sakellariou D, Locat J (eds) (2007) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 27. Springer, Dordrecht

  • Maldonado A, Barnolas A, Bohoyo F, Escuita C, Galindo-Zaldívar J, Hernández-Molina J, Jabaloy A, Lobo FJ, Nelson CH, Rodríguez-Fernández J, Somoza L, Vázquez J-T (2005) Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica). Glob Planet Change 45:99–129

    Article  Google Scholar 

  • Max MD, Ghidella M, Kovacs L, Paterlini M, Valladares JA (1999) Geology of the Argentine continental shelf and margin from aeromagnetic survey. Mar Petrol Geol 16:41–64

    Article  Google Scholar 

  • McCave IN (2002) Sedimentary settings on continental margins – an overview. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean margin systems. Springer, Berlin Heidelberg, pp 1–14

    Google Scholar 

  • McHugh CMG, Ryan WBF, Eittreim S, Reed D (1998) The influence of San Gregorio fault on the morphology of Monterey Canyon. Mar Geol 146:63–91

    Article  Google Scholar 

  • Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) (2010) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 28. Springer, Dordrecht

  • Olson DB, Podesta GP, Evans RH, Brown OB (1988) Temporal variations in the separation of Brazil and Malvinas Currents. Deep-Sea Res 35:1971–1990

    Article  Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26:1–73

    Article  Google Scholar 

  • Peterson RG, Johnson CS, Krauss W, Davis RE (1996) Lagrangian measurements in the Malvinas Current. In: Wefer G, Berger W, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer, Berlin Heidelberg, pp 239–247

    Google Scholar 

  • Piola AR, Romero SI (2004) Analysis of space-time variability of the Plata River plume. Gayana (Concepción) 68(2):482–486

    Article  Google Scholar 

  • Piola AR, Matano RP, Palma ED, Möller OO, Campos EJD (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:L01603. doi:10.1029/2004GL021638

    Article  Google Scholar 

  • Pratson LF, Coakley BJ (1996) A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows. Geol Soc Am Bull 108:225–234

    Article  Google Scholar 

  • Pratson LF, Ryan WBF, Mountain GS, Twichell DC (1994) Submarine canyon initiation by downslope-eroding sediment flows: evidence in late Cenozoic strata on the New Jersey continental slope. Geol Soc Am Bull 106:395–412

    Article  Google Scholar 

  • Rahiman TIH, Pettinga JR, Watts P (2007) The source mechanism and numerical modeling of the 1953 Suva tsunami, Fiji. Mar Geol 237:55–70

    Article  Google Scholar 

  • Rebesco M, Camerlenghi A (eds) (2008) Contourites. Developments in sedimentology, vol 60. Elsevier, Amsterdam

  • Rebesco M, Stow DA (2001) Seismic expression of contourites and related deposits: a preface. Mar Geophys Res 22:303–308

    Article  Google Scholar 

  • Reid JL (1989) On the total geostrophic circulation of the South Atlantic Ocean: flow patterns, tracers and transports. Prog Oceanogr 23:149–244

    Article  Google Scholar 

  • Schnabel M, Franke D, Engels M, Hinz K, Neben S, Damm V, Grassmann S, Pelliza H, Dos Santos PR (2008) The structure of the lower crust at the Argentine continental margin, South Atlantic at 44°S. Tectonophysics 454:14–22

    Article  Google Scholar 

  • Schwenk T, Spieß V, Hübscher C, Breitzke M (2003) Frequent channel avulsions within the active channel-levee system of the middle Bengal Fan - an exceptional channel-levee development derived from Parasound and Hydrosweep data. Deep Sea Res II 50(5):1023–1045

    Article  Google Scholar 

  • Spieß V, cruise participants (2002) Report and preliminary results of Meteor Cruise M 49/2, Montevideo (Uruguay) - Montevideo, 13.02. - 07.03.2001. Berichte, Fachbereich Geowissenschaften, Universtät Bremen

  • Stow D, Faugères J-C (2008) Contourite facies and the facies model. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, vol 60. Elsevier, Amsterdam, pp 223–256

    Google Scholar 

  • Stow D, Mayall M (2000) Deep-water sedimentary systems: new models for the 21st century. Mar Petrol Geol 17:125–136

    Article  Google Scholar 

  • Tappin DR, Watts P, McMurty M, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998—offshore evidence on the source mechanism. Mar Geol 175:1–23

    Article  Google Scholar 

  • Twichell DC, Roberts DG (1982) Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson and Baltimore Canyons. Geology 10:408–412

    Article  Google Scholar 

  • Uliana MA, Biddle KT, Cerdan J (1989) Mesozoic extension and formation of Argentine sedimentary basins. In: Tankard AJ, Balkwill HR (eds) Extensional tectonics and stratigraphy of the North Atlantic margins. AAPG Memoir 46:519–614

  • von Lom-Keil H, Spiess V, Hopfauf V (2002) Fine-grained sediment waves on the western flank of the Zapiola Drift, Argentine Basin: evidence for variations in Late Quaternary bottom flow activity. Mar Geol 192:239–258

    Article  Google Scholar 

  • Ward SN (2001) Landslide tsunami. J Geophys Res 106(B6):11201–11215

    Article  Google Scholar 

  • Watts P, Imamura F, Grilli ST (2000) Comparing model simulations of three benchmark tsunami generation cases. Sci Tsunami Hazards 18(2):107–124

    Google Scholar 

Download references

Acknowledgements

We thank the scientists and crew of Meteor Cruise M78/3 for their help in collecting the data. The paper was greatly strengthened by reviews from Aggeliki Georgiopoulou, Frank Strozyk, and the journal editors. Our research was funded by grants of the Deutsche Forschungsgemeinschaft in the frame of the Excellence Cluster “The Future Ocean” and the DFG-Research Center/Excellence Cluster “The Ocean in the Earth System”.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Sebastian Krastel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krastel, S., Wefer, G., Hanebuth, T.J.J. et al. Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay). Geo-Mar Lett 31, 271–283 (2011). https://doi.org/10.1007/s00367-011-0232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-011-0232-4

Keywords

Navigation