Skip to main content

Advertisement

Log in

Heat flow and quantity of methane deduced from a gas hydrate field in the vicinity of the Dnieper Canyon, northwestern Black Sea

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Seismic reflection data document for the first time the existence of a BSR in a limited area west of the Dnieper Canyon in the northwestern Black Sea. Seismic wide-angle data suggest that gas hydrates occupy in average 15±2% of the pore space in a zone of 100 m in thickness. A conservative quantification of the amount of methane associated with this gas hydrate occurrence is about 12±3×1011 m3 (0.6±0.2 Gt of methane carbon). Conductive heat flow deduced from the BSR depth is in the range of 21±6 to 55±15 mW m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aksu AE, Hiscott RN, Yasar D (1999) Oscillating Quaternary water levels of the Marmara Sea and vigorous outflow into the Aegean Sea from the Marmara Sea-Black Sea drainage corridor. Mar Geol 153 (1–4):275–302

    Google Scholar 

  • Azuende JM, Van de Beuque S, Dickens G, François C, Lavoy Y, Voutay O, Exon N (2000) Deep-sea diapirs and bottom simulating reflector in Fairway Basin (SW Pacific). Mar Geophys Res 21:579–587

    Article  Google Scholar 

  • Bleistein N, Cohen JK, Stockwell JW (2001) Mathematics of multidimensional seismic imaging, migration, and inversion. Springer, Berlin Heidelberg New York

  • Bouriak S, Vanneste M, Saoutkine A (2000) Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway. Mar Geol 163:125–148

    CAS  Google Scholar 

  • Bouriak SV, Akhmetjanov AM (1998) Origin of gas hydrate accumulations on the continental slope of the Crimea from geophysical studies. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Lond Spec Publ 137:215–222

    CAS  Google Scholar 

  • Degens ET, Stoffers P, Golubić S, Dickman MD (1978) Varve chronology: estimated rates of sedimentation in the Black Sea deep basin. In: Ross DA, Neprochnov YP, Shipboard Scientific Party (eds) Initial reports of the Deep Sea Drilling Project Leg 42B. Washington, DC, pp 499–508

  • Dercourt J, Zonenshain LP, Ricou L-E, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin, LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geophysical evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Dickens GR (1997) Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385(6615):426–428

    Article  CAS  Google Scholar 

  • Dickens GR (2001) Modelling the global carbon cycle with a gas hydrate capacitor: significance for the latest Paleocene thermal maximum. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. Am Geol Union Geophys Mono 124:3–18

    Google Scholar 

  • Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–183

    Article  CAS  Google Scholar 

  • Dickens GR, Quinby-Hunt MS (1994) Methane hydrate stability in seawater. Geophys Res Lett 21(19):2115–2118

    CAS  Google Scholar 

  • Ecker C, Dvorkin J, Nur AM (2000) Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics 65(2):565–573

    Article  Google Scholar 

  • Ergün M, Dondurur D, Çifçi G (2002) Acoustic evidence for shallow gas accumulations in the sediments of the Eastern Black Sea. Terra Nova 14(5):313–320

    Article  Google Scholar 

  • Finetti I, Bricchi G, Del Ben A, Pipan M, Xuan Z (1988) Geophysical study of the Black Sea. Bolletino di Geofisica Teorica ed Applicata 30(117–118):197–324

  • Ganguly N, Spence GD, Chapman NR, Hyndman RD (2000) Heat flow variations from bottom simulating reflectors on the Cascadia margin. Mar Geol 164:53–68

    Article  Google Scholar 

  • Ginsburg GD, Kremlev AN, Grigor’ev MN, Larkin GV, Pavlenkin AD, Saltykova NA (1990) Filtrogenic gas hydrates in the Black Sea (twenty-first voyage of the research vessel “Evpatoriya”). Soviet geology and geophysics (geolgiya I Geofizika) 31(3), Allerton Press, pp 8–16

  • Ginsburg GD, Soloviev VA (1998) Submarine gas hydrates. Translated from Russian, Norma Publishers, St. Petersburg, Russia

  • Görür N (1988) Timing of the opening of the Black Sea basin. Tectonophysics 147:247–262

    Article  Google Scholar 

  • Görür N, Cağatay MN, Emre Ö, Alpar B, Sakınc M, Islamoğlu Y, Algan O, Erkal T, Kecer M, Akkök R, Karlık G (2001) Is the abrupt drowning of the Black Sea shelf at 7,150 yr b.p.a myth? Mar Geol 176:65–73

    Article  Google Scholar 

  • Hamilton EL (1971) Elastic properties of marine sediments. J Geophys Res 76:579–604

    Google Scholar 

  • Haq BU (1998) Gas hydrates: greenhouse nightmare? Energy panacea or pipe dream? GSA Today 8(11):1–6

    Google Scholar 

  • Helgerud MB, Dvorkin J, Nur A, Sakai A, Collett T (1999) Elastic-wave velocity in marine sediments with gas hydrates: effective medium modelling. Geophys Res Lett 26(13):2021–2024

    Article  CAS  Google Scholar 

  • Henry P, Thomas M, Clennell MB (1999) Formation of natural gas hydrates in marine sediments 2. Thermodynamic calculation of stability conditions in porous sediments. J Geophys Res 104(B10):23005–23022

    Article  CAS  Google Scholar 

  • Holbrook WS, Hoskin H, Wood WT, Stephen RA, Lizarralde D, ODP Leg 164 Shipboard Scientific Party (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273:1840–1843

    CAS  Google Scholar 

  • Hornbach MJ, Holbrook WS, Gorman AR, Hackwith KL, Lizarralde D, Pecher I (2003) Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics 68(1):92–100

    Article  Google Scholar 

  • Hyndman RD, Davis EE (1992) A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J Geophys Res 97(B5):7025–7041

    CAS  Google Scholar 

  • Hyndman RD, Foucher JP, Yamano M, Fisher A, and Scientific Team of Ocean Drilling Program Leg 131 (1992) Deep-sea bottom-simulating-reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates. Earth Plant Sci Lett 109:289–301

    Article  CAS  Google Scholar 

  • Hyndman RD, Spence GD (1992) A seismic study of methane hydrate marine bottom simulating reflectors. J Geophys Res 97(5):6683–6698

    Google Scholar 

  • Ion G, Lericolais G, Nouzé H, Panin N, Ion E (2002) Seismo-acoustics evidence of gases in sedimentary edifices of the paleo-Danube realm. Commission Internationale pour l’Exploitation Scientifique de la mer Méditerranée, Monaco. Turbidite Systems and Deep Sea Fans of the Mediterranean and Black Seas, CIESM Workshop Series 17:91–95

  • Ivanov MK, Limonov AF, van Weering TjCE (1996) Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Mar Geol 132:253–271

    Article  Google Scholar 

  • Ivanov MK, Limonov AF, Woodside JM (1994) Geological and geophysical investigations in the Mediterranean and Black Seas. Initial results of the “Training-Through-Research” cruise of RV Gelendzhik in the Eastern Mediterranean and Black Sea (June-July 1991), UNESCO Rep Mar Sci 56

  • Ivanov MK, Limonov AF, Woodside JM (1998) Extensive deep fluid flux through the sea floor on the Crimean continental margin (Black Sea). In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Spec Publ 137:195–213

    CAS  Google Scholar 

  • Jaeger JC (1965) Application of the theory of heat conduction to geothermal measurements. In: Lee WHK (ed), Terrestrial heat flow. Am Geophys Union, Washington, DC, pp 7–13

  • Kaul N, Rosenberger A, Villinger H (2000) Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan. Mar Geol 164:37–51

    Article  Google Scholar 

  • Konyukhov AI, Ivanov MK, Kul’nitsky LM (1990) On mud volcanoes and gas hydrates in deep water regions of the Black Sea (in Russian). Lit Poezn Iskop 3:12–23

    Google Scholar 

  • Kutas RI, Rusakov OM, Kobolev VP (2002) Gas seeps in northwestern Black Sea: geological and geophysical studies. Russ Geol Geophys 43(7):698–705

    CAS  Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51

    CAS  Google Scholar 

  • Kvenvolden KA, Lorenson TD (2001) The global occurrence of natural gas hydrate. In: Paull CK, Dillon WP (eds), Natural gas hydrates: occurrence, distribution, and detection. Am Geol Union Geophys Monogr 124:3–18

    Google Scholar 

  • Limonov AF, Woodside JM, Ivanov MK (1994) Mud volcanism in the Mediterranean and Black Seas and shallow structure of the Eratosthenes Seamount. Initial results of the geological and geophysical investigations during the Third UNESCO-ESF “Training-Through-Research” cruise of RV Gelendzhik (June–July 1993), UNESCO Rep Mar Sci 64

  • Lodolo E, Camerlenghi A, Madrussani G, Tinivella U, Rossi G (2002) Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data. Geophys J Int 148:103–119

    Article  Google Scholar 

  • Lüdmann T, Wong HK (2003) Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk. Mar Geol 201(4):269–286

    Article  Google Scholar 

  • Luth C, Luth U, Gebruk AV, Thiel H (1999) Methane gas seeps along the oxic/anoxic gradient in the Black Sea: manifestations, biogenic sediment compounds and preliminary results on benthic ecology. Mar Ecol 20(3–4):221–249

    Google Scholar 

  • Michaelis W, Seifert R, Neuhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2003) Microbial reefs in the Black Sea fuelled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  Google Scholar 

  • Milkov AV, Claypool GE, Lee Y-J, Xu W, Dickens GR, Borowski WS (2003) In situ methane concentrations at Hydrate Ridge offshore Oregon: new constrains on the global gas hydrate inventory from an active margin. Geology 31(10):833–836

    CAS  Google Scholar 

  • Milkov AV, Sassen R (2000) Thickness of the gas stability zone, Gulf of Mexico continental slope. Mar Petrol Geol 17:981–991

    Article  CAS  Google Scholar 

  • Okay AI, Sengör AMC, Görür N (1994) Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 22:267–270

    Article  Google Scholar 

  • Paull CK, Matsumoto R, Wallace PJ and the ODP Leg 164A Shipboard Scientific Party (1996) Initial Reports of the Ocean Drilling Program Leg 164A. College Station, Texas, Ocean Drilling Program

  • Polikarpov GG, Egorov VN, Gulin SB, Gulin MB, Stokozov NA (1992) Gas seeps from the bottom of the Black Sea—a new object of molismology. In: Polikarpov GG (ed) Molismology of the Black Sea (in Russian). Nauka, Kiev, pp 10–28

  • Popescu I, Lericolais G, Panin N, Wong HK, Droz L (2001) Late Quaternary channel avulsion on the Danube deep-sea fan, Black Sea. Mar Geol 179:25–37

    Article  Google Scholar 

  • Robinson AG (1997) Introduction: tectonic elements of the Black Sea region. In: Robinson AG (ed) Regional and petroleum geology of the Black Sea and surrounding regions. Am Assoc Petrol Geol Mem 68:1–6

    Google Scholar 

  • Robinson AG, Kerusov E (1997) Stratigraphic and structural development of the Gulf of Odessa, Ukrainian Black Sea: implications of petroleum exploration. In: Robinson AG (ed) Regional and petroleum petrology of the Black Sea and surrounding regions. Am Assoc Petrol Geol Mem 68:369–380

    Google Scholar 

  • Ross DA, Neprochnov YP and the Scientific Party of DSDP Leg 42B (1978) Initial reports of the Deep Sea Drilling Project Leg 42B. Washington, DC

  • Ruppel C (1997) Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the U.S. Atlantic passive margin. Geology 25(8):699–702

    Article  Google Scholar 

  • Ryan WBF, Pitman III WC, Major CO, Shimkus K, Moskalenko V, Jones GA, Dimitrov P, Görür N, Sakinc M, Yüce H (1997) An abrupt drowning of the Black Sea shelf. Mar Geol 138:119–126

    Article  Google Scholar 

  • Sloan ED Jr (1990) Clathrate Hydrates of Natural Gases. Marcel Dekker, Inc., New York

  • Soloviev V, Ginsburg GD (1994) Formation of submarine gas hydrates. Bull Geol Soc Den 41(1):86–94

    CAS  Google Scholar 

  • Stoll RD, Bryan GM (1979) Physical properties of sediment containing gas hydrates. J Geophys Res 84:1629–1634

    CAS  Google Scholar 

  • Taylor MH, Dillon WP, Pecher IA (2000) Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data. Mar Geol 164:79–89

    CAS  Google Scholar 

  • Tinivella U, Accaino F (2000) Compressional velocity structure and Poisson’s ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica). Mar Geol 164:13–27

    Article  CAS  Google Scholar 

  • Townend J (1997) Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand. Mar Geol 141:209–220

    Article  Google Scholar 

  • Vanneste M, De Batist M, Golmshtok A, Kremlev A, Versteeg W (2001) Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia. Mar Geol 172:1–21

    Article  CAS  Google Scholar 

  • Vassilev A, Dimitrov I (2002) Spatial and quantity evaluation of the Black Sea gas hydrates. Russ Geol Geophys 43(7):672–684

    CAS  Google Scholar 

  • Waite WF, de Martin BJ, Kirby SH, Pinkston J, Ruppel CD (2002) Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand. Geophys Res Lett 29(24):2229

    Article  Google Scholar 

  • Winguth C, Wong HK, Panin N, Dinu C, Georgescu P, Ungureanu G, Krugliakov VV, Podshuveit V (2000) Upper Quaternary water level history and sedimentation in the northwestern Black Sea. Mar Geol 167 (1–2):127–146

    Google Scholar 

  • Wong HK, Lüdmann T, Panin N, Konerding P, Dinu C (2002) Northwestern Black Sea: Upper Quaternary sea level and sedimentation. Commission Internationale pour l’Exploitation Scientifique de la mer Méditerranée, Monaco. Turbidite Systems and Deep Sea Fans of the Mediterranean and Black Seas, CIESM Workshop Series 17:85–89

  • Wong HK, Panin N, Dinu C, Georgescu P, Rahn C (1994) Morphology and post-Chaudian (Late Pleistocene) evolution of the submarine Danube fan complex. Terra Nova 6:502–511

    Google Scholar 

  • Wood WT, Ruppel C (2000) Seismic and thermal investigations of the Blake Ridge gas hydrate area: a synthesis. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proceedings of the Ocean Drilling Program, Scientific Results Leg 164. College Station, Ocean Drilling Program, TX, pp 253–264

  • Woodside JM, Ivanov MK, Limonov AF (1997) Neotectonics and fluid flow through seafloor sediments in the Eastern Mediterranean and Black Seas: Part I and II. IOC Tech Ser 48

    Google Scholar 

  • Yamano M, Uyeda S, Aoki Y, Shipley TH (1982) Estimates of heat flow derived from gas hydrates. Geology 10:339–343

    CAS  Google Scholar 

  • Yefremova AG, Zhizhchenko BP (1974) Occurrence of crystal hydrates of gas in sediments of the modern marine basins. Doklady Akademii Nauk SSSR 214:1179–1181

    Google Scholar 

  • Zonenshain LP, Le Pichon X (1986) Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics 123:181–211

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the unfailing help of the captain, officers, crew and in particular the scientific party of the R/V Professor Logachev during the Black Sea cruise reported here. This work is carried out in the framework of the GHOSTDABS project of the German national research program “Gas Hydrates in the Geosystem” (GEOTECHNOLOGIEN) of the German Federal Ministry of Education and Research and the German Research Foundation (Project no. 03G0559A). This is publication no. GEOTECH-41 of the GEOTECHNOLOGIEN program and no. 2 of the GHOSTDABS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lüdmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüdmann, T., Wong, H.K., Konerding, P. et al. Heat flow and quantity of methane deduced from a gas hydrate field in the vicinity of the Dnieper Canyon, northwestern Black Sea. Geo-Mar Lett 24, 182–193 (2004). https://doi.org/10.1007/s00367-004-0169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-004-0169-y

Keywords

Navigation