Skip to main content
Log in

An experimental study of double-peeling mechanism inspired by biological adhesive systems

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Double- (or multiple-) peeling systems consist of two (or numerous) tapes adhering to a substrate and having a common hinge, where the pulling force is applied. Biological systems, consisting of tape-like (or spatula-like) contact elements, are widely observed in adhesive pads of flies, beetles, spiders, and geckos. It was previously hypothesized and analytically modeled that the simultaneous use of two or more such tape-like contacts in the opposite movement of contralateral legs during ceiling locomotion leads to enhanced, robust, and stable overall attachment, if compared to independently working contact points. In this paper, this biological solution for smart adhesion is demonstrated in an experiment using elastic adhesive tapes. The obtained results not only aided in explaining the functional mechanism of biological adhesive systems, but also in providing an experimental proof for biological observations and previous theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Gorb, Attachment devices of insect cuticle (Kluwer Academic Publishers, London, 2001)

    Google Scholar 

  2. S.N. Gorb, R.G. Beutel, Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88, 530–534 (2001)

    Article  ADS  Google Scholar 

  3. S.N. Gorb, Uncovering insect stickiness: structure and properties of hairy attachment devices. Am. Entomol. 51, 31–35 (2005)

    Article  Google Scholar 

  4. J. O. Wolff, S. N. Gorb, Attachment structures and adhesive secretions in arachnids, Springer (2016)

  5. A. Haase, Untersuchungen uber den Bau und die Entwicklung der Haftlappen bei den Geckotiden. Arch. Naturgesch. 66, 321–346 (1900)

    Google Scholar 

  6. R. Ruibal, V. Ernst, The structure of the digital setae of lizards. J. Morphol. 117, 271–293 (1965)

    Article  Google Scholar 

  7. U. Hiller, Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z. Morphol. Tiere 62, 307–362 (1968)

    Article  Google Scholar 

  8. D.J. Irschick, C.C. Austin, K. Petren, R.N. Fisher, J.B. Losos, O. Ellers, A comparative analysis of clinging ability among padbearing lizards. Biol. J. Linn. Soc. 59, 21–35 (1996)

    Article  Google Scholar 

  9. K. Autumn, P.H. Niewiarowski, J.B. Puthoff, Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annu. Rev. Ecol. Evol. Syst. 45, 445–470 (2014)

    Article  Google Scholar 

  10. M. Varenberg, N.M. Pugno, S.N. Gorb, Spatulate structures in biological fibrillar adhesion. Soft Matter 6, 3269–3272 (2010)

    Article  ADS  Google Scholar 

  11. K. Kendall, Thin-film peeling - the elastic term. J. Phys. D: Appl. Phys 8, 1449–1452 (1975)

    Article  ADS  Google Scholar 

  12. E. Arzt, S. Gorb, R. Spolenak, From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100, 10603–10606 (2003)

    Article  ADS  Google Scholar 

  13. N. Pugno, S. Gorb, Functional mechanism of biological adhesive systems described by multiple peeling approach, In: Proceedings of the 12th international conference on fracture, July 1217, Ottawa, Canada, USA (2009)

  14. N. Pugno, The theory of multiple peeling. Int. J. Fract. 171, 185–193 (2011)

    Article  Google Scholar 

  15. A.N. Gent, S. Kaang, Pulloff forces for adhesive tapes. J. Appl. Polym. Sci. 32, 4689–4700 (1986)

    Article  Google Scholar 

  16. J.G. Williams, Energy release rates for the peeling of flexible membranes and the analysis of blister tests. Int. J. Fract. 87, 265–288 (1997)

    Article  Google Scholar 

  17. K.T. Wan, Fracture mechanics of a V-peel adhesion test transition from a bending plate to a stretching membrane. J. Adhes. 70, 197–207 (1999)

    Article  Google Scholar 

  18. A. Molinari, G. Ravichandran, Peeling of elastic tapes: effects of large deformations, pre-straining, and of a peel-zone model. J. Adhes. 84, 961–995 (2008)

    Article  Google Scholar 

  19. M.R. Begley, R.R. Collino, J.N. Israelachvili, R.M. McMeeking, Peeling of a tape with large deformations and frictional sliding. J. Mech. Phys. Solids 61, 1265–1279 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Z. Sun, K.T. Wan, D.A. Dillard, A theoretical and numerical study of thin film delamination using the pull-off test. Int. J. Solids Struct. 41, 717–730 (2004)

    Article  MATH  Google Scholar 

  21. B. Chen, P. Wu, H. Gao, Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J. R. Soc. Interface 6, 529–537 (2009)

    Article  Google Scholar 

  22. D. Labonte, W. Federle, Biomechanics of shear-sensitive adhesion in climbing animals: peeling, pre-tension and sliding-induced changes in interface strength. J. R. Soc. Interface 13, 20160373 (2016)

    Article  Google Scholar 

  23. K. Kendall, Interfacial dislocations spontaneously created by peeling. J. Phys. D: Appl. Phys. 11, 1519–1527 (1978)

    Article  ADS  Google Scholar 

  24. B. Chen, P.D. Wu, H. Gao, Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Proc. R. Soc. A 464, 1639–1652 (2008)

    Article  ADS  Google Scholar 

  25. F. Bosia, S. Colella, V. Mattoli, B. Mazzolai, N.M. Pugno, Hierarchical multiple peeling simulations. RSC Adv. 4, 25447–25452 (2014)

    Article  Google Scholar 

  26. A. Pantano, N.M. Pugno, S.N. Gorb, Numerical simulations demonstrate that the double tapering of the spatualae of lizards and insects maximize both detachment resistance and stability. Int. J. Fract. 171, 169–175 (2011)

    Article  Google Scholar 

  27. S. Xia, L. Ponson, Toughening and asymmetry in peeling of heterogeneous adhesives. Phys. Rev. Lett. 108, 196101 (2012)

    Article  ADS  Google Scholar 

  28. Z. Gu, S. Li, F. Zhang, S. Wang, Understanding surface adhesion in nature: a peeling model. Adv. Sci 3, 1500327 (2016)

    Article  Google Scholar 

  29. L. Afferrante, G. Carbone, G. Demelio, N. Pugno, Adhesion of elastic thin films: double peeling of tapes versus axisymmetric peeling of membranes. Tribol. Lett. 52, 439–447 (2013)

    Article  Google Scholar 

  30. C. Putignano, L. Afferrante, L. Mangialardi, G. Carbone, Equilibrium states and stability of pre-tensioned adhesive tapes. Beilstein J. Nanotechnol. 5, 1725–1731 (2014)

    Article  Google Scholar 

  31. L. Heepe, S.N. Gorb, Biologically inspired mushroom-shaped adhesive microstructures. Annu. Rev. Mater. Res. 44, 173–203 (2014)

    Article  ADS  Google Scholar 

  32. S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4, 271–275 (2007)

    Article  Google Scholar 

  33. K. Dening, L. Heepe, L. Afferrante, G. Carbone, S.N. Gorb, Adhesion control by inflation: implications from biology to artificial attachment device. Appl. Phys. A 116, 567–573 (2014)

    Article  ADS  Google Scholar 

  34. X. Jin, J. Strueben, L. Heepe, A. Kovalev, Y.K. Mishra, R. Adelung, S.N. Gorb, A. Staubitz, Joining the unjoinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers. Adv. Mater. 24, 5676–5680 (2012)

    Article  Google Scholar 

  35. L. Heepe, A.E. Kovalev, A.E. Filippov, S.N. Gorb, Adhesion failure at 180,000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Phys. Rev. Lett. 111, 104301 (2013)

    Article  ADS  Google Scholar 

  36. L. Heepe, G. Carbone, E. Pierro, A.E. Kovalev, S.N. Gorb, Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl. Phys. Lett. 104, 011906 (2014)

    Article  ADS  Google Scholar 

  37. S. N. Gorb, Biological fibrillar adhesives: Functional principles and biomimetic applications. In: da Silva, L.F.M., chsner, A., Adams, R.D. (eds.), Handbook of Adhesion Technology, Springer, 1410-1436 (2011)

  38. Q.H. Cheng, B. Chen, H.J. Gao, Y.W. Zhang, Sliding-induced non-uniform pretension governs robust and reversible adhesion: a revisit of adhesion mechanisms of geckos. J. R. Soc. Interface 9, 283–291 (2012)

    Article  Google Scholar 

  39. A. Filippov, V.L. Popov, S.N. Gorb, Shear induced adhesion: Contact mechanics of biological spatula-like attachment devices. J. Theor. Biol. 276, 126–131 (2011)

    Article  MathSciNet  Google Scholar 

  40. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair. Nature 405, 681685 (2002)

    Google Scholar 

  41. H. Gao, X. Wang, H. Yao, S.N. Gorb, E. Arzt, Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37, 275285 (2005)

    Article  Google Scholar 

  42. G. Huber, S.N. Gorb, R. Spolenak, E. Arzt, Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol. Lett. 1, 24 (2005)

    Article  Google Scholar 

  43. K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky, Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209, 3569–3579 (2006)

    Article  Google Scholar 

  44. Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn, J. Isralachvili, Adhesion and friction in gecko toe attachment and detachment 103, 19230–19325 (2006)

  45. S. Niederegger, S. Gorb, Y. Jiao, Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J. Comp. Physiol. A 187, 961970 (2002)

    Article  Google Scholar 

  46. S. Niederegger, S.N. Gorb, Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J. Comp. Physiol. A 192, 1223–1232 (2006)

    Article  Google Scholar 

  47. E. Wohlfart, J.O. Wolff, E. Arzt, S.N. Gorb, The whole is more than the sum of all its parts: collective effect of spider attachment organs. J. Exp. Biol. 217, 222–224 (2014)

    Article  Google Scholar 

  48. V.B. Wigglesworth, How does a fly cling to the under surface of a glass sheet? J. Exp. Biol. 129, 373–376 (1987)

    Google Scholar 

  49. A.P. Russell, A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia, Gekkonidae). J. Zool. Lond. 176, 437476 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

Extensive work of V. Kastner on the preliminary experiments is greatly acknowledged. We would like to thank E. Appel for assistance with Fig. 2a. We would like to thank A. Kovalev for helpful comments on the manuscript. This work was partially supported by CARTRIB Project of The Leverhulme Trust (S. N. Gorb) and projects CP 1550 and 1623 by a grant of the Cluster of Excellence 80 The Future Ocean (L. Heepe and S. N. Gorb). The Future Ocean is funded within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. S. Raguseo greatly acknowledges support of the Erasmus\(+\) programme of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Heepe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8 KB)

Supplementary material 1 (MP4 8575 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heepe, L., Raguseo, S. & Gorb, S.N. An experimental study of double-peeling mechanism inspired by biological adhesive systems. Appl. Phys. A 123, 124 (2017). https://doi.org/10.1007/s00339-016-0753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0753-9

Keywords

Navigation