Skip to main content
Log in

Elasticity of the hair cover in air-retaining Salvinia surfaces

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Immersed in water superhydrophobic surfaces (e.g., lotus) maintain thin temporary air films. In certain aquatic plants and animals, these films are thicker and more persistent. Floating ferns of the genus Salvinia show elaborated hierarchical superhydrophobic surface structures: a hairy cover of complex trichomes. In the case of S. molesta, they are eggbeater shaped and topped by hydrophilic tips, which pin the air–water interface and prevent rupture of contact. It has been proposed that these trichomes can oscillate with the air–water interface, when turbulences occur and thereby stabilize the air film. The deformability of such arrays of trichomes requires a certain elasticity of the structures. In this study, we determined the stiffness of the trichome coverage of S. molesta and three other Salvinia species. Our results confirm the elasticity of the trichome coverage in all investigated Salvinia species. We did not reveal a clear relationship between the time of air retention and stiffness of the trichome coverage, which means that the air retention function is additionally dependent on different parameters, e.g., the trichome shape and surface free energy. These data are not only interesting for Salvinia biology, but also important for the development of biomimetic air-retaining surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Barthlott, N. Ehler, Tropische und Subtropische Pflanzenwelt 19, 367 (1977)

    Google Scholar 

  2. W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)

    Article  Google Scholar 

  3. K. Koch, H.F. Bohn, W. Barthlott, Langmuir 25, 14116 (2009)

    Article  Google Scholar 

  4. Y.Y. Yan, N. Gao, W. Barthlott, Adv. Colloid Interface 169, 80 (2011)

    Article  Google Scholar 

  5. A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott, Bioinspir. Biomim. 2, 126 (2007)

    Article  ADS  Google Scholar 

  6. A. Balmert, H.F. Bohn, P. Ditsche-Kuru, W. Barthlott, J. Morphol. 272, 442 (2011)

    Article  Google Scholar 

  7. P. Ditsche-Kuru, E. Schneider, J.-E. Melskotte, M. Brede, A. Leder, W. Barthlott, Beilstein J. Nanotechnol. 2, 137 (2011)

    Article  Google Scholar 

  8. W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Wahlheim, A. Weis, A. Kaltenmaier, Y.A. Leder, H.F. Bohn, Adv. Mater. 22, 2325 (2010)

    Article  Google Scholar 

  9. G. McHale, M.I. Newton, N.J. Shirtcliffe, Soft Matter 6, 714 (2010)

    Article  ADS  Google Scholar 

  10. J.E. Melskotte, M. Brede, A. Wolter, W. Barthlott, A. Leder, in Lasermethoden in der Strömungsmesstechnik, 21. Fachtagung, 3–5. September 2013, München; (Tagungsband) ed by C.J. Kähler, R. Hainz, C. Cierpka, B. Ruck, A. Leder, D. Dopheide (Karlsruhe, Dt. Ges. Für Laser-Anemometrie GALA e.V.), p. 53-1

  11. D. Gandyra, S. Wahlheim, S. Gorb, W. Barthlott, T. Schimmel, Beilstein J. Nanotechnol. 6, 11 (2015)

    Article  Google Scholar 

  12. A.K. Balasubramanian, A.C. Miller, AIAA J. 42, 411 (1999)

    Article  ADS  Google Scholar 

  13. W. Barthlott, S. Wiersch, Z. Colic, K. Koch, Botany 87, 830 (2009)

    Article  Google Scholar 

  14. E. Gorb, V. Kastner, A. Peressadko, E. Arzt, L. Gaume, N. Rowe, S: Gorb. J. Exp. Biol. 207, 2947 (2004)

    Article  Google Scholar 

  15. S. Gorb, Y. Jiao, M. Scherge, J. Comput. Physiol. A 186, 821 (2000)

    Article  Google Scholar 

  16. Y. Jiao, S. Gorb, M. Scherge, J. Exp. Biol. 203, 1887 (2000)

    Google Scholar 

  17. M.J. Mayser, H.F. Bohn, M. Reker, W. Barthlott, Beilstein J. Nanotechnol. 5, 812 (2014)

    Article  Google Scholar 

  18. M. Mayser, Doctoral Dissertation, Universitäts-und Landesbibliothek Bonn, 2013

  19. Z. Cerman, B. Striffler, W. Barthlott, in Functional Surfaces in Biology, vol. 1, ed by S. Gorb, (Springer, Berlin, 2009), p. 97

Download references

Acknowledgments

We thank the German Federal Ministry of Education and Research BMBF for the financial support of this BIONA-project (project 01RB0803A) to WB. We acknowledge the Botanical Gardens of the University of Bonn for the cultivation and supply of living plant material and Matthias Mail for some comments to this manuscript. This study was partly supported by the SPP 1420 priority program of the German Science Foundation (DFG) “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials” (project GO 995/9-2) to SG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Barthlott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ditsche, P., Gorb, E., Mayser, M. et al. Elasticity of the hair cover in air-retaining Salvinia surfaces. Appl. Phys. A 121, 505–511 (2015). https://doi.org/10.1007/s00339-015-9439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9439-y

Keywords

Navigation