Skip to main content
Log in

Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In Arctic macroalgal belt ecosystems, macrozoobenthic production is thought to be an important link between primary production and higher trophic levels. Macrozoobenthic biomass and secondary production were studied along transects (2.5–15 m depth) in the macroalgal belt at Hansneset in Kongsfjorden, Svalbard, from 2012 to 2013. At 2.5 m, the standing stock reached its maxima of 174.8 ± 54.4 g ash-free dry weight per 1 m2, while density (4341 ind. m−2 ± 1127 95 % CI) and production (7.0 g C m−2 y−1 ± 2.8 95 % CI) were highest at 5 m water depth in 2012/13. Compared to a study from 1996/98, this re-sampling indicated a drastic change in the depth distribution of macrozoobenthic biomass and secondary production at Hansneset. While both biomass and secondary production increased with water depth in 1996/98, this pattern was inversed in 2012/13 owing to a tenfold increase in biomass and secondary production in the upper most sublittoral (2.5–5 m). Variability of macrozoobenthic biomass and secondary production corresponded to differences in the physical environment and macroalgal vegetation along the depth gradient. In the last decade, the number of ice-free days per year increased probably due to Arctic warming. As a result, shallow rocky habitats (2.5–5 m) are less affected by ice scouring, thereby opening new space for colonisation by benthic fauna. However, faunal secondary production was low compared to macroalgal primary production, indicating a considerable export of most of the algal production from the shallow habitats to the adjacent areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullah MI, Fredriksen S (2004) Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway. J Mar Biol Assoc UK 84:887–894

    Article  Google Scholar 

  • ACIA (2004) Arctic climate impact assessment. Cambridge University Press, Cambridge, p 1042

    Google Scholar 

  • Banse KM, Mosher S (1980) Adult body mass and annual production/biomass relationships of field populations. Ecol Monogr 50:355–379

    Article  Google Scholar 

  • Bartsch B, Paar M, Fredriksen S, Schwanitz M, Daniel C, Wiencke C (subm.) Changes in seaweed biomass, depth distribution and age structure of kelps in an Arctic fjord (Spitsbergen) between 1996/98 and 2012–2014. Polar Biol (in review)

  • Beuchel F, Gulliksen B (2008) Temporal patterns of benthic community development in an Arctic fjord (Kongsfjorden, Svalbard): results of a 24-year manipulation study. Polar Biol 31:913–924. doi:10.1007/S00300-008-0429-9

    Article  Google Scholar 

  • Beuchel F, Gulliksen B, Carroll ML (2006) Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980–2003). J Mar Syst 63:35–48. doi:10.1016/j.jmarsys.2006.05.002

    Article  Google Scholar 

  • Brey T (2010) An empirical model for estimating aquatic invertebrate respiration. Met Ecol Evol 1:92–101. doi:10.1111/j.2041-210X.2009.00008.x

    Article  Google Scholar 

  • Brey T (2012) A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production. Limnol Oceanogr: Methods 10:581–589. doi:10.4319/lom.2012.10.581

    Article  Google Scholar 

  • Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments: are there unique adaptations? Antarct Sci 5:253–266

    Article  Google Scholar 

  • Brown TA, Belt ST, Piepenburg D (2012) Evidence for a pan Arctic-sea-ice diatom-diet in Strongylocentrotus spp. Polar Biol 35:1281–1287. doi:10.1007/s00300-012-1164-9

    Article  Google Scholar 

  • Christie H, Fredriksen S, Rinde E (1998) Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia 375(376):49–58

    Article  Google Scholar 

  • Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233. doi:10.3354/meps08351

    Article  Google Scholar 

  • Clark GF, Stark JS, Johnston EL, Runcie JW, Goldsworthy PM, Raymond B, Riddle MJ (2013) Light-driven tipping points in polar ecosystems. Global Change Biol 19(12):3749–3761. doi:10.1111/gcb.12337

    Article  Google Scholar 

  • Cottier FR, Nilsen, F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of Arctic shelves in response to large-scale atmospheric circulation. Geophysical Research Letters. L10607 – Editor’s highlighted article. doi:10.1029/2007GL029948

  • Cusson M, Bourget E (2005) Global patterns of macroinvertebrate production in marine benthic habitats. Mar Ecol Prog Ser 297:1–12

    Article  Google Scholar 

  • Duggins DO, Simenstad CA, Estes JA (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–173

    Article  CAS  PubMed  Google Scholar 

  • Dunton KH, Reimnitz E, Schonberg S (1982) An arctic kelp community in the alaskan beaufort sea. Arctic 35:465–484

  • Eckman JE, Duggins DO (1989) Ecology of understory kelp environments. I. Effects of kelps on flow and particle transport. J Exp Mar Biol Ecol 129:173–187

    Article  Google Scholar 

  • Elverhøi A (1984) Glacigenic and associated marine sediments on the Weddell Sea, fjords of Spitsbergen and the Barents Sea: a review. Mar Geol 57:53–88

    Article  Google Scholar 

  • Feder HM, Jewett SC, Blanchard AL (2007) Southeastern Chukchi Sea (Alaska) macrobenthos. Polar Biol 30:261–275. doi:10.1007/s00300-006-0180-z

    Article  Google Scholar 

  • Fredriksen S (2003) Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Mar Ecol Prog Ser 260:71–81

    Article  CAS  Google Scholar 

  • Gerland S, Renner AHH (2007) Sea-ice mass-balance monitoring in an Arctic fjord. Ann Glaciol 46:435–442

    Article  Google Scholar 

  • Grebmeier JM, Overland J, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, McLaughlin FA, McNutt SL (2006) A major ecosystem shift in the northern Bering Sea. Science 311:1461–1464

    Article  CAS  PubMed  Google Scholar 

  • Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564. doi:10.1007/s003000100262

    Article  Google Scholar 

  • Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Prog Ser 253:77–83

    Article  Google Scholar 

  • Hanelt D, Tüg H, Bischof K, Gross C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fiord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658. doi:10.1007/S002270000481

    Article  CAS  Google Scholar 

  • Holbrook SJ, Carr MH, Schmitt RJ, Coyer JA (1990) Effect of giant kelp on local abundance of reef fishes: the importance of ontogenetic resource requirement. B Mar Sci 47:104–114

    Google Scholar 

  • Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition zonation and biomass of marine benthic macroalgae in Kongsfjorden Svalbard. Bot Mar 55:399–414. doi:10.1515/bot-2012-0097

    Article  Google Scholar 

  • Ito H, Kudoh S (1997) Characteristics of water in Kongsfjorden, Svalbard. Proc NIPR Symp Polar Meteorol Glaciol 11:211–232. National Institute of Polar Research, Tokyo

  • Jørgensen NM, Christie H (2003) Diurnal, horizontal and vertical dispersal of kelp-associated fauna. Hydrobiologia 503:69–76

    Article  Google Scholar 

  • Kedra M, Renaud PE, Andrade H, Goszczko I, Ambrose WG Jr (2013) Benthic community structure, diversity, and productivity in the shallow Barents Sea bank (Svalbard Bank). Mar Biol 160:805–819. doi:10.1007/s00227-012-2135-y

    Article  PubMed  Google Scholar 

  • Konar B (2007) Recolonization of a high latitude hard-bottom nearshore community. Polar Biol 30:663–667. doi:10.1007/s00300-007-0261-7

    Article  Google Scholar 

  • Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. Proc Natl Acad Sci USA 109:14052–14057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause-Jensen D, Marbà N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud PE, Balsby TJS, Rysgaard S (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biol 18:2981–2994. doi:10.1111/j.1365-2486.2012.02765.x

    Article  Google Scholar 

  • Leclerc JC, Riera P, Leroux C, Lévêque L, Laurans M, Schaal G, Davoult D (2013) Trophic significance of kelps in kelp communities in Brittany (France) inferred from isotopic comparisons. Mar Biol 160:3249–3258. doi:10.1007/s00227-013-2306-5

    Article  Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol 24:512–522

    Article  Google Scholar 

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981

    Article  CAS  PubMed  Google Scholar 

  • Miller RJ, Page HM (2012) Kelp as a trophic resource for marine suspension feeders: a review of isotope-based evidence. Mar Biol 159:1391–1402. doi:10.1007/s00227-012-1929-2

    Article  Google Scholar 

  • Nilsen M, Pedersen T, Nilssen EM (2006) Macrobenthic biomass, productivity (P/B) and production in a high-latitude ecosystem, North Norway. Mar Ecol Prog Ser 321:67–77

    Article  Google Scholar 

  • Norderhaug KM, Christie H, Fredriksen S (2005) Fish-macrofauna interactions in a kelp (Laminaria hyperborea) forest. J Mar Biol Assoc UK 85:1279–1286

    Article  Google Scholar 

  • Nuth C, Schuler TV, Kohler J, Altena B, Hagen JO (2012) Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. J Glaciol 58:119–133. doi:10.3189/2012JoG11J036

    Article  Google Scholar 

  • Oksanen J, Blanchet FG , Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.3-0

  • Olischläger M, Wiencke C (2013) Seasonal fertility and combined effects of temperature and UV-radiation on Alaria esculenta and Laminaria digitata (Phaeophyceae) from Spitsbergen. Polar Biol 36:1019–1029. doi:10.1007/s00300-013-1325-5

    Article  Google Scholar 

  • Piepenburg D (2000) Arctic brittle stars (Echinodermata : Ophiuroidea). In: Gibson RN, Barnes M (eds) Oceanography and marine biology, vol 38. Taylor & Francis Ltd, London, pp 189–256

    Google Scholar 

  • Piepenburg D, Schmid MK (1997) A photographic survey of the epibenthic megafauna of the Arctic Laptev Sea shelf: distribution, abundance, and estimates of biomass and organic carbon demand. Mar Ecol Prog Ser 147:63–75

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org

  • Renaud PE, Morata N, Ambrose WG Jr, Bowie JJ, Chiuchiolo A (2007) Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf. J Exp Mar Biol Ecol 349:248–260. doi:10.1016/j.jembe.2007.05.021

    Article  CAS  Google Scholar 

  • Rodrigues J (2009) The increase in the length of the ice-free season in the Arctic. Cold Reg Sci Technol 59:78–101. doi:10.1016/j.coldregions.2009.05.006

    Article  Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2003) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459. doi:10.1017/s0376892902000322

    Google Scholar 

  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Article  Google Scholar 

  • Vetter EW (1995) Detritus-based patches of high secondary production in the nearshore benthos. Mar Ecol Prog Ser 120:251–262

    Article  Google Scholar 

  • Voronkov A, Hop H, Gulliksen B (2013) Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard. Polar Res. doi:10.3402/polar.v32i0.11208

    Google Scholar 

  • Wangensteen B, Eiken T, Ødegård RS, Sollid JL (2007) Measuring coastal cliff retreat in the Kongsfjorden area, Svalbard, using terrestrial photogrammetry. Polar Res 26:14–21. doi:10.1111/j.1751-8369.2007.00002.x

    Article  Google Scholar 

  • Welch HE, Bergmann MA, Siferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy flow through the marine ecosystem of the Lancaster Sound Region, Arctic Canada. Arctic 45:343–357

    Article  Google Scholar 

  • Węsławski JM, Wiktor J, Kotwicki L (2010) Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodiv 40:123–130. doi:10.1007/s12526-010-0038-z

    Article  Google Scholar 

  • Węsławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Kędra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85. doi:10.1007/s12526-010-0073-9

    Article  Google Scholar 

  • Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. J Exper Mar Biol Ecol 329:20–33. doi:10.1016/j.jembe.2005.08.006

    Article  Google Scholar 

  • Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004) Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. Ber Polarforsch Meeresforsch 492:55–62

    Google Scholar 

  • Wiencke C, Gómez I, Dunton K (2009) Phenology and seasonal physiological performance of polar seaweeds. Bot Mar 52:593–608. doi:10.1515/bot.2009.078

    Google Scholar 

  • Włodarska-Kowalczuk M, Kukliński P, Ronowicz M, Legeżyńska J, Gromisz S (2009) Assessing species richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, Svalbard). Polar Biol 32:897–905. doi:10.1007/s00300-009-0590-9

    Article  Google Scholar 

  • Wong PP, Losada IJ, Gattuso J-P, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandadrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 361–409

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507. doi:10.1515/bot.2009.072

    Article  Google Scholar 

  • Zajączkowski M (2008) Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard. Pol Polar Res 29:59–72

    Google Scholar 

  • Zajączkowski M, Nygård H, Hegseth EN, Berge J (2009) Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006–2007. Polar Biol 33:223–239. doi:10.1007/s00300-009-0699-x

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed as part of the long-term project KOL 06 “The biology of Arctic benthic algae” at the International Arctic Environmental Research and Monitoring Facility at Ny-Ålesund, Spitsbergen, Norway. We would like to express thanks to the AWI diving team, the logistic support by the AWIPEW station and Kings Bay. We also acknowledge the efforts of numerous field assistants, all contributing scientists and technicians K. Hübner, P. Kadel, B. Hussel, E. Lacchini and C. de la Vega, who helped sorting and analysing the samples presented in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Paar.

Additional information

This article belongs to the special issue on the “Kongsfjorden ecosystem – new views after more than a decade of research”, coordinated by Christian Wiencke and Haakon Hop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paar, M., Voronkov, A., Hop, H. et al. Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol 39, 2065–2076 (2016). https://doi.org/10.1007/s00300-015-1760-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1760-6

Keywords

Navigation