Skip to main content

Advertisement

Log in

Putative selected markers in the Chionodraco genus detected by interspecific outlier tests

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The identification of loci under selection (outliers) is a major challenge in evolutionary biology, being critical to comprehend evolutionary processes leading to population differentiation and speciation, and for conservation purposes, also in light of recent climate change. However, detection of selected loci can be difficult when populations are weakly differentiated. This is the case of marine fish populations, often characterized by high levels of gene flow and connectivity, and particularly of fish living in the Antarctic marine environment, characterized by a complex and strong circulating system promoting individual dispersal all around the continent. With the final aim of identifying outlier loci putatively under selection in the Chionodraco genus, we used 21 microsatellites, including both genomic (Type II) and EST-linked loci (Type I), to investigate the genetic differentiation among the three recently derived Chionodraco species that are endemic to the freezing Antarctic waters. Neutrality tests were applied in interspecific comparisons in order to identify candidate loci showing high levels of genetic differentiation, which might reveal imprints of past selection. Three outlier loci were identified, detecting a higher differentiation between species than did neutral loci. Outliers showed sequence similarity to a calmodulin gene, to an antifreeze glycoprotein/trypsinogen-like protease gene and to nonannotated fish mRNAs. Selective pressures acting on outlier loci identified in this study might reflect past evolutionary processes, which led to species divergence and local adaptation in the Chionodraco genus. Used loci will provide a valuable tool for future population genetic studies in Antarctic notothenioids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    CAS  PubMed  Google Scholar 

  • Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7(1):10–14. doi:10.1111/j.1471-8286.2006.01560.x

    Article  CAS  Google Scholar 

  • André C, Larsson LC, Laikre L, Bekkevold D, Brigham J, Carvalho GR, Dahlgren TG, Hutchinson WF, Mariani S, Mudde K, Ruzzante DE, Ryman N (2010) Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity (Edinb) 106(2):270–280. doi:10.1038/hdy.2010.71

    Article  Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323. doi:10.1186/1471-2105-9-323

    Article  PubMed  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Book  Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13(4):969–980. doi:10.1111/j.1365-294X.2004.02125.x

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B Biol Sci 263(1377):1619–1626

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France)

  • Bowcock AM, Kidd JR, Mountain JL, Hebert JM, Carotenuto L, Kidd KK, Cavallisforza LL (1991) Drift, admixture, and selection in human-evolution—a study with DNA polymorphisms. Proc Natl Acad Sci USA 88(3):839–843. doi:10.1073/pnas.88.3.839

    Article  CAS  PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631. doi:10.1093/molbev/msl191

    Article  CAS  PubMed  Google Scholar 

  • Chen LB, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94(8):3811–3816

    Article  CAS  PubMed  Google Scholar 

  • Cheng CHC, Chen LB (1999) Evolution of an antifreeze glycoprotein. Nature 401(6752):443–444. doi:10.1038/46721

    Article  CAS  PubMed  Google Scholar 

  • Chistiakov DA, Hellemans B, Volckaert FAM (2006) Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255(1–4):1–29. doi:10.1016/j.aquaculture.2005.11.031

    Article  CAS  Google Scholar 

  • Coppe A, Agostini C, Marino IAM, Zane L, Bargelloni L, Bortoluzzi S, Patarnello T (2013) Genome evolution in the cold: antarctic Icefish muscle transcriptome reveals selective duplications increasing mitochondrial function. Genome Biol Evol. doi:10.1093/gbe/evs108

    PubMed  Google Scholar 

  • Damerau M, Matschiner M, Salzburger W, Hanel R (2012) Comparative population genetics of seven notothenioid fish species reveals high levels of gene flow along ocean currents in the southern Scotia Arc, Antarctica. Polar Biol 35(7):1073–1086. doi:10.1007/s00300-012-1155-x

    Article  Google Scholar 

  • Fauvelot C, Lemaire C, Planes S, Bonhomme F (2007) Inferring gene flow in coral reef fishes from different molecular markers: which loci to trust? Heredity (Edinb) 99(3):331–339. doi:10.1038/sj.hdy.6801005

    Article  CAS  Google Scholar 

  • Fischer W, Hureau JC (1985) FAO species identification sheets for fishery purposes. In: Fischer W, Hureau JC (eds) Southern ocean: fishing areas 48, 58, and 88, CCAMLR Convention area. Food and Agriculture Organization of the United Nations, Rome, pp 233–470

    Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180(2):977–993. doi:10.1534/genetics.108.092221

    Article  PubMed  Google Scholar 

  • Freamo H, O’Reilly P, Berg PR, Lien S, Boulding EG (2011) Outlier SNPs show more genetic structure between two Bay of Fundy metapopulations of Atlantic salmon than do neutral SNPs. Mol Ecol Resour 11(Suppl 1):254–267. doi:10.1111/j.1755-0998.2010.02952.x

    Article  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59(8):1633–1638

    CAS  PubMed  Google Scholar 

  • Kock KH (1992) Antarctic fish and fisheries. Studies in polar research. Cambridge University Press, Cambridge

    Google Scholar 

  • Lara AJ, Pérez-Trabado G, Villalobos DP, Díaz-Moreno S, Cantón FR, Claros MG (2007) A web tool to discover full-length sequences—Full-Lengther. In: Corchado E, Corchado JM, Abraham A (eds) Innovations in hybrid intelligent systems. vol advances in soft computing. Springer, Berlín, pp 361–368. doi:10.1007/978-3-540-74972-1_47

  • Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74(1):175–195

    CAS  PubMed  Google Scholar 

  • Matschiner M, Hanel R, Salzburger W (2009) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18(12):2574–2587. doi:10.1111/j.1365-294X.2009.04220.x

    Article  CAS  PubMed  Google Scholar 

  • Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60(11):2399–2402. doi:10.1111/j.0014-3820.2006.tb01874.x

    PubMed  Google Scholar 

  • MolecularEcologyResourcesPrimerDevelopmentConsortium, Agostini C, Agudelo PA, BÂ K, Barber PA, Bisol PM, Brouat C, Burgess TI, Calves I, Carrillo Avila M, Chow S, Cordes L, Da Silva D, Dalecky A, De Meester L, Doadrio I, Dobigny G, Duplantier JM, Evison SEF, Ford R, Fresneau D, Galetti PM, Gauthier P, Geldof S, Granjon L, GuÉRin F, Hardy GE, Hernandez Escobar C, Hima K, Hu J, Huang L, Humeau L, Jansen B, Jaquemet S, Jiang Z-Q, Jung S-J, Kim B-S, Kim C-H, Kim J-O, Lai C-H, Laroche J, Lavergne E, Lawton-Rauh A, Le Corre M, Leach MM, Lee J, Leo AE, Lichtenzveig J, Lin LIN, Linde CC, Liu S-F, Marino IAM, McKeown NJ, Nohara K, Oh M-J, Okamoto H, Oliver R, Olivera Angel M, Ornelas-GarcÍA CP, Orsini L, Ostos Alfonso H, Othman AS, Papetti C, Patarnello T, Pedraza-Lara C, Piller KR, Poteaux C, Requier JB, Roziana MK, Semba Y, Sembene M, Shah RM, Shahril AR, Shao A, Shaw PW, Song L, Souza Ferreira R, Su Y-Q, Suzuki N, Tatard C, Taylor KM, Taylor PWJ, Thiam M, Valbuena R, Wang HE, Yang B-G, Yuan Q, Zajonz U, Zane L, Zhu L, Zhuang Z-M, Zulaiha AR (2011) Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2010–30 November 2010. Mol Ecol Resour 11(2):418–421. doi:10.1111/j.1755-0998.2010.02970.x

  • Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernandez DA, Jones CD (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci USA 109(9):3434–3439. doi:10.1073/pnas.1115169109

    Article  CAS  PubMed  Google Scholar 

  • Nicodemus-Johnson J, Silic S, Ghigliotti L, Pisano E, Cheng CHC (2011) Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic toothfish Dissostichus mawsoni (Norman). Genomics 98(3):194–201. doi:10.1016/j.ygeno.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EE, Hemmer-Hansen J, Poulsen NA, Loeschcke V, Moen T, Johansen T, Mittelholzer C, Taranger GL, Ogden R, Carvalho GR (2009) Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol Biol 9:276. doi:10.1186/1471-2148-9-276

    Article  PubMed  Google Scholar 

  • O’Brien SJ, Womack JE, Lyons LA, Moore KJ, Jenkins NA, Copeland NG (1993) Anchored reference loci for comparative genome mapping in mammals. Nat Genet 3(2):103–112. doi:10.1038/ng0293-103

    Article  PubMed  Google Scholar 

  • O’Reilly PT, Canino MF, Bailey KM, Bentzen P (2004) Inverse relationship between F and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 13(7):1799–1814. doi:10.1111/j.1365-294X.2004.02214.x

    Article  PubMed  Google Scholar 

  • Papetti C, Zane L, Patarnello T (2006) Isolation and characterization of microsatellite loci in the icefish Chionodraco rastrospinosus (Perciformes, Notothenioidea, Channichthyidae). Mol Ecol Notes 6(1):207–209. doi:10.1111/j.1471-8286.2005.01194.x

    Article  CAS  Google Scholar 

  • Papetti C, Susana E, Patarnello T, Zane L (2009) Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands. Mar Ecol Prog Ser 376:269–281. doi:10.3354/meps07831

    Article  Google Scholar 

  • Papetti C, Marino IAM, Agostini C, Bisol PM, Patarnello T, Zane L (2011) Characterization of novel microsatellite markers in the Antarctic silverfish Pleuragramma antarcticum and cross species amplification in other Notothenioidei. Conserv Genet Resour 3(2):259–262. doi:10.1007/s12686-010-9336-9

    Article  Google Scholar 

  • Papetti C, Pujolar JM, Mezzavilla M, La Mesa M, Rock J, Zane L, Patarnello T (2012) Population genetic structure and gene flow patterns between populations of the Antarctic icefish Chionodraco rastrospinosus. J Biogeogr 39(7):1361–1372. doi:10.1111/j.1365-2699.2011.02682.x

    Article  Google Scholar 

  • Patarnello T, Marcato S, Zane L, Varotto V, Bargelloni L (2003) Phylogeography of the Chionodraco genus (Perciformes, Channichthydae) in the Southern Ocean. Mol Phylogenet Evol 28(3):420–429. doi:10.1016/s1055-7903(03)00124-6

    Article  CAS  PubMed  Google Scholar 

  • Patwary MU, Kenchington EL, Bird CJ, Zouros E (1994) The use of random amplified polymorphic DNA markers in genetic-studies of the sea-scallop Placopecten magellanicus (Gmelin, 1791). J Shellfish Res 13(2):547–553

    Google Scholar 

  • Porter AH (2003) A test for deviation from island-model population structure. Mol Ecol 12(4):903–915. doi:10.1046/j.1365-294X.2003.01783.x

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version-1.2)—population-genetics software for exact tests and ecumenicism. J Hered 86(3):248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223–225

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8(1):103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Schlötterer C (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics 160(2):753–763

    PubMed  Google Scholar 

  • Seeb LW, Templin WD, Sato S, Abe S, Warheit K, Park JY, Seeb JE (2011) Single nucleotide polymorphisms across a species’ range: implications for conservation studies of Pacific salmon. Mol Ecol Resour 11(Suppl 1):195–217. doi:10.1111/j.1755-0998.2010.02966.x

    Article  PubMed  Google Scholar 

  • Susana E, Papetti C, Barbisan F, Bortolotto E, Buccoli S, Patarnello T, Zane L (2007) Isolation and characterization of eight microsatellite loci in the icefish Chaenocephalus aceratus (Perciformes, Notothenioidei, Channichthyidae). Mol Ecol Notes 7(5):791–793. doi:10.1111/j.1471-8286.2007.01703.x

    Article  CAS  Google Scholar 

  • Van de Putte AP, Van Houdt JKJ, Maes GE, Janko K, Koubbi P, Rock J, Volckaert FAM (2009) Species identification in the trematomid family using nuclear genetic markers. Polar Biol 32(12):1731–1741. doi:10.1007/s00300-009-0672-8

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Vasemagi A, Nilsson J, Primmer CR (2005) Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22(4):1067–1076. doi:10.1093/molbev/msi093

    Article  PubMed  Google Scholar 

  • Vitalis R (2003) DetSel 1.0: a computer program to detect markers responding to selection. J Hered 94(5):429–431. doi:10.1093/jhered/esg083

    Article  CAS  PubMed  Google Scholar 

  • Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158(4):1811–1823

    CAS  PubMed  Google Scholar 

  • Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44(2):213–232. doi:10.1111/j.1095-8649.1994.tb01200.x

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Vittorio Varotto, Dr. Erica Bortolotto, the Italian National Program for Antarctic Research (PNRA), and the Alfred Wegener Institute (AWI) for collecting samples during the Antarctic expeditions. This work has been funded by the Italian National Program for Antarctic Research (PNRA). CA is a PhD student in Evolutionary Biology at the University of Padova, with a program partially funded under National Science Foundation (NSF) Grant 0741348. CP has been funded by a un Senior Research Grant of University of Padova (GRIC110B82). IAMM has been funded by a University of Padova post doc Grant (CPDR084151/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Zane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostini, C., Papetti, C., Patarnello, T. et al. Putative selected markers in the Chionodraco genus detected by interspecific outlier tests. Polar Biol 36, 1509–1518 (2013). https://doi.org/10.1007/s00300-013-1370-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1370-0

Keywords

Navigation