Skip to main content
Log in

Seasonal abundance and feeding patterns of copepods Temora longicornis, Centropages hamatus and Acartia spp. in the White Sea (66°N)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We have studied the seasonal dynamics of abundance and feeding characteristics of three species of calanoid copepods (Acartia spp., Centropages hamatus and Temora longicornis) in the White Sea from the surface water layer (0–10 m), in order to assess their role in the pelagic food web and to determine the major factors governing their population dynamics during the productive season. These species dominated in the upper water layer (0–10 m) from June through September, producing up to 3 generations per year. Data on the food spectra revealed all species to be omnivorous; but some inter- and intraspecific differences were observed. Generally, copepods consumed diatoms, dinoflagellates and microzooplankton. The omnivory index ‘UC’ (i.e., fatty acid unsaturation coefficient) varied from 0.2 to 0.6, which implied ingestion of phytoplankton. The different degree of selectivity on the same food items by the studied species was observed, and therefore, successful surviving strategy with minimal overlapping could be assumed. In total, the populations of the three studied copepod species grazed up to 2.15 g C m−2 day−1 and released up to 0.68 g C m−2 day−1 in faecal pellets. They consumed up to 50% of particulate organic carbon, or up to 85% of phytoplankton standing stock (in terms of Chl. a), and thus played a significant role in the transformation of particulate organic matter. Seasonal changes in abundance of the studied species depended mostly on water temperature in the early summer, but were also affected by food availability (Chl. a concentration) during the productive season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albers CS, Kattner G, Hagen W (1996) The composition of wax esters, tryacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar Chem 55:347–358

    Article  CAS  Google Scholar 

  • Anraku M, Omori M (1963) Preliminary survey on the relationship between the feeding habit and the structure of the mouth-parts of marine copepods. Limnol Oceanogr 8:116–126

    Article  Google Scholar 

  • Atkinson A (1996) Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey population. Mar Ecol Prog Ser 130:85–86

    Article  Google Scholar 

  • Bathmann U, Liebezeit G (1986) Chlorophyll in copepod faecal pellets: changes in pellet numbers and pigment content during a declining Baltic spring bloom. Mar Ecol 7:59–73

    Article  Google Scholar 

  • Berger VJa (ed) (1995) White Sea. Biological resources and problems of their rational exploitations. Explorations of the faunas of the seas 42(50). Zoological Institute RAS Publ. St. Petersburg (in Russian)

  • Berger VJa (2007) Production potential of the White Sea. Explorations of the faunas of the seas, 60(68). Zoological Institute RAS Publ. St. Petersburg (in Russian)

  • Berger V, Dahle S, Galaktionov K, Kosobokova X, Naumov A, Rat’kova T, Savinov V, Savinova T (2001) White Sea. Ecology and environment. Derzavets Publisher, St. Petersburg-Tromsø

    Google Scholar 

  • Berger VJa, Naumov AD, Usov N, Zubaha M, Smolyar I, Tatusko R, Levitus S (2003) 36-year time series (1963–1998) of zooplankton, salinity and temperature in the White Sea, NOAA Atlas NESDIS 57, 362 p

  • Berggreen U, Hansen B, Kiørboe T (1988) Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implication for determination of copepod production. Mar Biol 99:341–352

    Article  Google Scholar 

  • Bobrov JA, Maximova MP, Savinov VM (1995) Primary production of phytoplankton. White Sea. Explorations of the faunas of the seas, 42(50). Zoological Institute RAS Publ. St. Petersburg

  • Bonnet D, Harris R, Lopez-Urrutia A, Halsband-Lenk C, Greve W, Valdes L, Hirche H-J, Engel M, Alvarez-Ossorio MT, Wiltshire K (2007) Comparative seasonal dynamics of Centropages typicus at seven coastal monitoring stations in the North Sea, English Channel and Bay of Biscay. Prog Oceanogr 72(2–3):233–248

    Article  Google Scholar 

  • Boyd P, Newton P (1995) Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep Sea Res 42:619–639

    Article  Google Scholar 

  • Breteler WCMK, Schogt N, Rampen S (2005) Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar Ecol Prog Ser 291:125–133

    Article  CAS  Google Scholar 

  • Buhring SI, Christiansen B (2001) Lipids in selected abyssal benthopelagic animals: links to the epipelagic zone? Prog Oceanogr 50:369–382

    Article  Google Scholar 

  • Calbet A, Carlotti F, Gaudy R (2007) The feeding ecology of the copepod Centropages typicus (Kröyer). Prog Oceanogr 72:137–150

    Article  Google Scholar 

  • Calliari D, Tiselius P (2005) Feeding and reproduction in a small Calanoid copepod: Acartia clausi can compensate quality with quantity. Mar Ecol Prog Ser 298:241–250

    Article  Google Scholar 

  • Carmack E, Wassmann P (2006) Food webs and physical-biological coupling on pan-arctic shelves: unifying concepts and comprehensive perspectives. Prog Oceanogr 71:446–477

    Article  Google Scholar 

  • Colaço A, Desbruyé D, Guezennec J (2007) Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community. Mar Ecol 28:15–24

    Article  Google Scholar 

  • Corner EDS, O’Hara SCM, Neal AC, Eglinton G (1986) Copepod faecal pellets and the vertical flux of biolipids. In: Corner EDS, O’Hara SCM (eds) The biological chemistry of marine copepods. Clarendon Press, Oxford, pp 260–321

  • Cotonnec G, Brunet C, Sautour B, Thoumelin G (2001) Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystis sp. in the English Channel, as determined by pigment and fatty acid analyses. J Plank Res 23:693–703

    Article  CAS  Google Scholar 

  • Cripps GC, Hill HJ (1998) Changes in lipid composition of copepods and Euphausia superba associated with diet and environmental conditions in the marginal ice zone, Bellingshausen Sea, Antarctica. Deep Sea Res I 45:1357–1381

    Article  CAS  Google Scholar 

  • Dagg M (1993) Sinking particles as a possible source of nutrition for the large calanoid copepod Neocalanus cristatus in the subarctic Pacific Ocean. Deep Sea Res I 40:1431–1445

    Article  Google Scholar 

  • Dagg M, Grill DW (1980) Natural feeding rates of Centropages typicus females in the New York Bight. Limnol Oceanogr 25:597–609

    Article  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • Dam HG, Peterson WT, Bellantoni DC (1994) Seasonal feeding and fecundity of the calanoid copepod Acartia tonsa in long Island sound: is omnivory important to egg production? Hydrobiologia 292(293):191–199

    Article  Google Scholar 

  • David V, Sautour B, Galois R, Chardy P (2006) The paradox high zooplankton biomass-low vegetal particulate organic matter in high turbidity zones: what way for energy transfer? J Exp Mar Biol Ecol 333:202–218

    Article  Google Scholar 

  • Desvilettes CH, Bourdier G, Amblard CH, Barth B (1997) Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshw Biol 38:629–637

    Article  CAS  Google Scholar 

  • Devreker D, Souissi S, Seuront L (2005) Effects of chlorophyll concentration and temperature variation on the reproduction and survival of Temora longicornis (Copepoda, Calanoida) in the Eastern English Channel. J Exp Mar Biol Ecol 318:145–162

    Article  CAS  Google Scholar 

  • Dilling L, Wilson J, Steinberg D, Alldredge A (1998) Feeding by euphausiid Euphausia pacifica and the copepod Calanus pacificus on marine snow. Mar Ecol Prog Ser 170:189–201

    Article  Google Scholar 

  • Dzierzbicka-Głowacka L, Lemieszek L, Żmijewska MI (2009) Parameterisation of a population model for Acartia spp. in the southern Baltic Sea Part 1. Development time. Oceanologia 51(2):165–184

    Google Scholar 

  • Dzierzbicka-Glowacka L, Żmijewska IM, Mudrak S, Jakacki J, Lemieszek A (2010) Population modeling of Acartia spp. in a water column ecosystem model for the Southern Baltic Sea. Biogeosci Discuss 7:55–82

    Article  Google Scholar 

  • Evans CA, O’Reilly JE, Thomas JP (1987) A handbook for the measurement of chlorophyll a and primary production. Biological Investigations of Marine Antarctic Systems and Stocks (BIOMASS). Texas A&M University College Station, Texas

    Google Scholar 

  • Falk-Petersen S, Sargent JR, Tande K (1987) Lipid composition of zooplankton in relation to the Sub-Arctic food web. Polar Biol 8:115–120

    Article  CAS  Google Scholar 

  • Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar RM (2002) Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar Ecol Prog Ser 227:187–194

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for isolating total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Froneman PW, Pakhomov EA, Perissinotto R, McQuaid CD (1996) Role of microplankton in the diet and daily ration of Antarctic zooplankton species during austral summer. Mar Ecol Prog Ser 143:15–23

    Article  Google Scholar 

  • Frost BW (1972) Effect of size and concentration of food on the feeding behavior of marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–816

    Article  Google Scholar 

  • Gasparini S, Daro MH, Antajan E, Tackx M, Rousseau V, Parent JY, Lancelot C (2000) Mesozooplankton grazing during the Phaeocystis globosa bloom in the Southern Bight of the North Sea. J Sea Res 43:345–356

    Article  Google Scholar 

  • Gifford DJ, Fessenden ML, Garrahan PR, Martin E (1995) Grazing by microzooplankton and mesozooplankton in high-latitude North Atlantic Ocean: spring versus summer dynamics. J Geophys Res 100:6665–6675

    Article  CAS  Google Scholar 

  • Golikov AN, Babkov AI, Prygunkova RV (1989) On the question of structure and distribution patterns of the White Sea ecosystems due to the geomorphology and hydrology. Proc Zool Inst AN USSR, Leningrad, vol. 203, 4–13 (in Russian)

  • Graeve M, Hagen W, Kattner G (1994a) Herbivorous or omnivorous? on the significance of lipid composition as trophic markers in Antarctic copepods. Deep Sea Res I 41:915–924

    Article  Google Scholar 

  • Graeve M, Hagen W, Kattner G (1994b) Diet-induced changes in the fatty acids composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J Exp Mar Biol Ecol 182:97–110

    Article  CAS  Google Scholar 

  • Hagen W (1999) Reproductive strategies and energetic adaptations of polar zooplankton. Invertebrate Reprod Dev 36:25–34

    Article  Google Scholar 

  • Hagen W, Kattner G, Graeve M (1995) On the lipid biochemistry of polar copepods: compositional differences in the Antarctic calanoids Euchaeta antactica and Euchirella rostromagna. Mar Biol 123:451–457

    Article  CAS  Google Scholar 

  • Halsband-Lenk C (2005) Metridia pacifica in Dabob Bay, Washington: the diatom effect and the discrepancy between high abundance and low egg production rates. Prog Oceanogr 67:422–441

    Article  Google Scholar 

  • Hansen FC, Breteler WCMK, Reckermann M, Riegman R (1993) Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar Ecol Prog Ser 102:51–57

    Article  Google Scholar 

  • Harris RP, Lenz J, Wiebe PH, Huntley ME, Skjoldal HR (2000) Zooplankton methodological manual. Academic Press, NY

    Google Scholar 

  • Holste L, St John MA, Peck MA (2009) The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Mar Biol 156:527–540

    Article  Google Scholar 

  • Irigoien X, Castel J (1995) Feeding rates and productivity of the copepod Acartia bifilosa in a highly turbid estuary; The Gironde (SW France). Hydrobiologia 311:115–125

    Article  Google Scholar 

  • Jansen S, Riser CW, Wassmann P, Bathmann U (2006) Copepod feeding behaviour and egg production during a dinoflagellate bloom in the North Sea. Harmful Algae 5:102–112

    Article  Google Scholar 

  • Kattner G, Fricke HSG (1986) Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr 361:263–268

    Article  CAS  Google Scholar 

  • Kattner G, Graeve M, Hagen W (1994) Ontogenetic and seasonal changes in fatty acid/alcohol compositions of the dominant Antarctic copepod Calanus propincuus, Calanoides acutus and Rhincalanus gigas. Mar Biol 118:637–644

    Article  CAS  Google Scholar 

  • Kimmerer WJ, Ferm N, Nicolini MH, Peñalva C (2005) Chronic food limitation of egg production in populations of copepods of the genus Acartia in the San Francisco Estuary. Estuar Coasts 28(4):541–550

    Article  Google Scholar 

  • Kiørboe T, Grossart H-P, Ploug H, Tang KW (2002) Mechanisms and rates of bacterial colonization of sinking aggregates. Appl Environ Microbiol 68(8):3996–4006

    Article  PubMed  Google Scholar 

  • Kleppel GS, Holliday DV, Pieper RE (1991) Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol Oceanogr 36:172–178

    Article  Google Scholar 

  • Kleppel GS, Burkart CA, Carter K, Tomas C (1996) Diets of calanoid copepods on the West Florida continental shelf: Relationships between food concentration, food composition and feeding activity. Mar Biol 127:209–217

    Article  Google Scholar 

  • Kleppel GS, Hazzard SE (2000) Diet and egg production of the copepod Acartia tonsa in Florida Bay. II. Role of nutritional environment. Mar Biol 137:111–121

    Article  Google Scholar 

  • Kosobokova KN (1999) The reproductive cycle and life history of the Arctic copepod Calanus glacialis in the White Sea. Polar Biol 22:254–263

    Article  Google Scholar 

  • Kozlowsky-Suzuki B, Carlsson P, Ruhl A, Graneli E (2006) Food selectivity and grazing impact on toxic Dinophysis spp. by copepods feeding on natural plankton assemblages. Harmful Algae 5:57–68

    Article  CAS  Google Scholar 

  • Kreibich T, Saborowski R, Hagen W, Niehoff B (2008) Short-term variation of nutritive and metabolic parameters in Temora longicornis females (Crustacea, Copepoda) as a response to diet shift and starvation. Helgol Mar Res 62(3):241–249

    Article  Google Scholar 

  • Lane PVZ, Smith SL, Urban JL, Biscaye PE (1994) Carbon flux and recycling associated with zooplanktonic faecal pellets on the shelf of the middle Atlantic Bight. Deep Sea Res 41:437–457

    Article  CAS  Google Scholar 

  • Lavaniegos BE, Lopez-Cortes D (1997) Fatty acid composition and community structure of plankton from San Lorenzo Channel, Gulf of California. Estuar Coast Shelf Sci 45:845–854

    Article  CAS  Google Scholar 

  • Levinsen H, Turner T, Nielsen TG, Hansen BW (2000) On the trophic coupling between protists and copepods in Arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77

    Article  Google Scholar 

  • Martynova DM (2003) Copepod faecal pellets in the White Sea: experimental and in situ studies. Oceanology 43:S123–S133

    Google Scholar 

  • Martynova DM (2005) Feeding of the mass species of the White Sea copepods. Oceanology 45(2):249–255

    Google Scholar 

  • Martynova DM, Graeve M, Bathmann UV (2009) Adaptation strategies of copepods (superfam. Centropagoidea) in the White Sea (66 N). Polar Biol 32:133–146

    Article  Google Scholar 

  • Mauchline J (1998) Biology of calanoid copepods. Advances in marine biology. The Scottish Association for Marine Science, UK

    Google Scholar 

  • McKinnon AD, Ayukai T (1996) Copepod egg production and food resources in Exmouth Gulf, Western Australia. Mar Freshw Res 47(4):595–603

    Article  CAS  Google Scholar 

  • Morales CE (1987) Carbon and nitrogen content of copepod faecal pellets: effect of food concentration and feeding behavior. Mar Ecol Prog Ser 36:107–114

    Article  CAS  Google Scholar 

  • Mousseau L, Breteler WCMK, Legendre L, Dauchez S, Tamigneaux E, Tremblay J-E, Ingram RG (2001) Assessing the trophic pathways that dominate planktonic food webs: an approach based on simple ecological ratios. J Plankton Res 23:765–777

    Article  Google Scholar 

  • Napolitano GE, Pollero RJ, Gayoso AM, McDonald BA, Thompson RJ (1997) Fatty acids as trophic markers of phytoplankton bloom in the Bahia Blanca Estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochem Syst Ecol 25:739–755

    Article  CAS  Google Scholar 

  • Olli K, Wassmann P, Reigstad M, Ratkova TN, Arashkevich E, Pasternak A, Matrai PA, Knulst J, Tranvik L, Klais R, Jacobsen A (2007) The fate of production in the central Arctic Ocean—top-down regulation by zooplankton expatriates? Prog Oceanogr 72:84–113

    Article  Google Scholar 

  • Olson MB, Lessard EJ, Wong CHJ, Bernhardt MJ (2006) Copepod feeding selectivity on microplankton, including the toxigenic diatoms Pseudonitzschia spp., in the coastal Pacific Northwest. Mar Ecol Prog Ser 326:207–220

    Article  Google Scholar 

  • Päffenhofer G-A (1988) Feeding rates and behavior of zooplankton. Bull Mar Sci 43:430–445

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, NY

    Google Scholar 

  • Pasternak AF (1995) Gut content and diel feeding rhythm in dominant copepods in the ice-covered Weddell Sea, March 1992. Polar Biol 15:583–586

    Article  Google Scholar 

  • Pertsova NM, Kosobokova KN (2003) Zooplankton of the White Sea: features of the composition and structure, seasonal dynamics, and the contribution to the formation of matter fluxes. Oceanology 43:S108–S122

    Google Scholar 

  • Poulet SA (1978) Comparison between five coexisting species of marine copepods feeding on naturally occurring particulate matter. Limnol Oceanogr 23:1126–1143

    Article  Google Scholar 

  • Prygunkova RV (1974) Some features of zooplankton seasonal changes in Chupa Inlet, the White Sea (Nekotorye osobennosti sezonnogo razvitiya zooplanktona guby Chupa Belogo morya). Seasonal changes in the White and Barents Seas (Sezonnye yavleniya v zhizni Belogo i Barentseva morey). Studies on Sea Fauna (Issledovaniya Fauny Morey), Leningrad, vol. 13 (21), 4–55 (in Russian)

  • Rey C, Carlotti F, Tande K, Hygum BH (1999) Egg and faecal pellet production of Calanus finmarchicus females from controlled mesocosms and in situ populations: Influence of age and feeding history. Mar Ecol Prog Ser 188:133–148

    Article  Google Scholar 

  • Roman MR, Reaugh ML, Zhang XS (2006) Ingestion of the dinoflagellate, Pfiesteria piscicida, by the calanoid copepod, Acartia tonsa. Harmful Algae 5:435–441

    Article  Google Scholar 

  • Romankevich EA, Vetrov AA (2001) Carbon cycle in the Russian Arctic Seas. Moscow: Nauka (in Russian)

  • Saiz E, Rodriguez V, Alcaraz M (1992) Spatial distribution and feeding rates of Centropages typicus in relation to frontal hydrographic structures in the Catalan Sea (Western Mediterranean). Mar Biol 112(1):49–56

    Article  Google Scholar 

  • Sargent JR, Falk-Petersen S (1988) The lipid biochemistry of calanoid copepods. Hydrobiologia 167(168):101–114

    Article  Google Scholar 

  • Skiver J (1980) Seasonal resource partitioning patterns of marine calanoid copepods: species interactions. J Exp Mar Biol Ecol 44:229–245

    Article  Google Scholar 

  • Stevens CJ, Deibel D, Parrish CC (2004a) Copepod omnivory in the North Water Polynya (Baffin Bay) during autumn: spatial patterns in lipid composition. Deep Sea Res I 51:1637–1658

    CAS  Google Scholar 

  • Stevens CJ, Deibel D, Parrish CC (2004b) Species-specific differences in lipid composition and omnivory indices in Arctic copepods collected in deep water during autumn (North Water Polynya). Mar Biol 144:905–915

    Article  CAS  Google Scholar 

  • Svensen C, Nejsgaard JC (2003) Sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems. J Plankton Res 25:917–926

    Article  Google Scholar 

  • Tackx M, Polk P (1982) Feeding of Acartia tonsa Dana (Copepoda, Calanoida): predation on nauplii of Canuella perplexa T. et A. Scott (Copepoda, Harpacticoida) in the sluice-dock at Ostend. Hydrobiologia 94(2):131–133

    Article  Google Scholar 

  • Tackx M, Irigoien X, Castel J, Zhu M-Y, Daro N, Zhang X, Nijs J (1995) Copepod feeding in the Westerschelde and the Gironde. Hydrobiologia 311:71–83

    Article  Google Scholar 

  • Tande K, Henderson RJ (1988) Lipid composition of copepodite stages and adult females of Calanus glacialis in Arctic waters of the Barents Sea. Polar Biol 8:333–339

    Article  CAS  Google Scholar 

  • Thompson AM, Durbin EG, Durbin AG (1994) Seasonal changes in maximum ingestion rate of Acartia tonsa in Narragansett Bay, Rhode Island, USA. Mar Ecol Prog Ser 108:91–105

    Article  Google Scholar 

  • Usov NV, Zubakha MA (2004) Temperature optimums of the White Sea zooplankton. Biologya morya Russ J Mar Biol 30:34–43

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Int Vereinigung Theoretische und Angew Limnol 9:1–38

    Google Scholar 

  • Vincent D, Hartmann HJ (2001) Contribution of ciliated microprotozoans and dinoflagellates to the diet of three copepod species in the Bay of Biscay. Hydrobiologia 443:193–204

    Article  Google Scholar 

  • Wang R, Li C, Wang K, Zhang W (1998) Feeding activities of zooplankton in the Bohai Sea. Fisheries Oceanogr 7(3/4):265–271

    Article  Google Scholar 

  • Wesche A, Wiltshire KH, Hirche HJ (2007) Overwintering strategies of dominant calanoid copepods in the German Bight, southern North Sea. Mar Biol 151(4):1309–1320

    Article  Google Scholar 

Download references

Acknowledgments

The DAAD (fellowship MBFOKU2001 No. A/2403), the Copernicus Foundation (grant No. ICA2-CT-2000-10053), Russian Foundation for Basic Researches (RFBR grants 08-04-01691-a, 08-04-98843-r-sever-a, 10-04-00316-a), Otto Schmidt Labor Fellowship (grants OSL-07-11 and OSL-09-16) and State Program No. 1201051247 supported our investigations. Data on the water temperature and Chl. a concentration in the 52nd cruise of RV ‘Ivan Petrov’ were kindly provided by Academician Alexander Lisitzin (P. P. Shirshov’s Oceanology Institute, RAS, Moscow). We are grateful to Prof. Victor Berger and our colleagues from the White Sea Biological Station and from the P. P. Shirshov’s Institute of Oceanology (Moscow) for their help and data courtesy, and to Prof. G. Kattner (AWI, Bremerhaven, Germany) and Dr. Janne Søreide (University Centre on Svalbard, UNIS, Longyearbyen, Norway) for useful advice. Special thanks go to Christiane Lorenzen and Helga Schwarz for their technical support of the elemental analysis at the Alfred-Wegener-Institute for Polar and Marine Research (AWI) in Bremerhaven. The authors are indebted to Dr. L. S. Barden and R. Alheit for helpful comments and linguistic improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria M. Martynova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynova, D.M., Kazus, N.A., Bathmann, U.V. et al. Seasonal abundance and feeding patterns of copepods Temora longicornis, Centropages hamatus and Acartia spp. in the White Sea (66°N). Polar Biol 34, 1175–1195 (2011). https://doi.org/10.1007/s00300-011-0980-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-0980-7

Keywords

Navigation