Skip to main content

Advertisement

Log in

Yermak Plateau revisited: spatial and temporal patterns of meiofaunal assemblages under permanent ice-coverage

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Benthic sampling between 1997 and 2006 on the Yermak Plateau, a permanently ice-covered submarine peninsula northwest of Svalbard, exhibited regional differences with generally higher meiofauna numbers in southern and western parts (~2,250–2,300 ind. 10 cm−2 in the south-west, compared with ~1,200–1,350 ind. 10 cm−2 in the north-east). Distribution patterns suggest a current-driven lateral input of POM, produced in the high-productive Marginal Ice Zone, with increased intensity along the western slope of the plateau. Significant correlations between comparably ‘fresh’ sediment-bound phytodetritus and the taxonomic composition of meiofauna assemblages indicate that food quality decisively affects the community structure. The long-term development of meiobenthic communities showed no clear trend; however, a comparison of summer and winter data exhibited higher meiofauna densities and a more diverse composition in July samples. The predominance of small nematodes in the summer samples might point to reproductive activities stimulated by increased food availability. The taxonomic composition of nematode assemblages showed distinct regional differences, thereby indicating more stable environmental conditions in north-eastern parts of the Yermak Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antoine D, André J-M, Morel A (1996) Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem Cycles 10:57–69

    Article  CAS  Google Scholar 

  • Barnett PRO, Watson J, Connelly D (1984) A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol Acta 7:399–408

    Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based concentration. Limnol Oceanogr 42:1–28

    CAS  Google Scholar 

  • Birgel D, Stein R, Hefter J (2004) Aliphatic lipids in recent sediments of the Fram Strait/Yermak Plateau (Arctic Ocean): composition, sources and transport processes. Mar Chem 88:127–160

    Article  CAS  Google Scholar 

  • Boetius A, Lochte K (1994) Regulation of microbial enzymatic degradation of OM in deep-sea sediments. Mar Ecol Prog Ser 104:299–307

    Article  CAS  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  Google Scholar 

  • Bongers T, Alkemade R, Yeates GW (1991) Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of Maturity Index. Mar Ecol Prog Ser 76:135–142

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v5: user manual/tutorial. PRIMER-E, Plymouth, p 91

    Google Scholar 

  • Damm E (1997) Oxygen. In: Stein R, Fahl K (eds) Scientific cruise report of the Arctic expedition ARK-XIII/2 of RV “Polarstern” in 1997. Rep Polar Res 255, pp 138–140

  • De Grisse AT (1969) Redescription ou modification de quelques techniques utilisées dans l’étude de nematodes phytoparasitires. Meded Rijsfakulteit Landbouwneten-scheppen Gent 34:351–369

    Google Scholar 

  • Ducklow HW, Doney SC, Steinberg DK (2009) Contributions of long-term research and time-series observations to marine ecology and biogeochemistry. Annu Rev Mar Sci 1:279–302

    Article  Google Scholar 

  • Findlay RH, Dobbs FC (1993) Quantitative description of microbial communities using lipid analysis. In: Kemp PF (ed) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, pp 271–284

    Google Scholar 

  • Findlay RH, King GM, Watling L (1989) Efficiency of phospholipid analysis in determining microbial biomass in sediments. Appl Environ Microbiol 55:2888–2893

    PubMed  CAS  Google Scholar 

  • Fontanier C, Jorissen FJ, Chaillou G, David C, Anschutz P, Lafon V (2003) Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay. Deep Sea Res 50:457–494

    Article  Google Scholar 

  • Hargrave BT, von Bodungen B, Stoffyn-Egli P, Mudies PJ (1994) Seasonal variability in particle sedimentation under permanent ice cover in the Arctic Ocean. Cont Shelf Res 14:279–293

    Article  Google Scholar 

  • Hasemann C (2006) Kleinskalige Heterogenität in der arktischen Tiefsee: Einfluß kleiner Kaltwasser-Schwämme auf die Diversität benthischer Nematoden-Gemeinschaften. PhD thesis, Uni Bremen, Germany, pp 285

  • Hoste E, Vanhove S, Schewe I, Soltwedel T, Vanreusel A (2007) Spatial and temporal variations in deep-sea meiofauna assemblages in the Marginal Ice Zone of the Arctic Ocean. Deep Sea Res I 54:109–129

    Article  Google Scholar 

  • Hurlbert SH (1971) The non-concept of species diversity: a critique and alternative parameters. Ecol 52:577–586

    Article  Google Scholar 

  • Jensen P (1987) Feeding ecology of free-living aquatic nematodes. Mar Ecol Prog Ser 35:187–196

    Article  Google Scholar 

  • Jensen P (1988) Nematode assemblages in the deep-sea benthos of the Norwegian Sea. Deep Sea Res I 35:1173–1184

    Article  Google Scholar 

  • Köster M, Jensen P, Meyer-Reil L-A (1991) Hydrolytic activity associated with organisms and biogenic structures in deep-sea sediments. In: Chrost R (ed) Microbial enzymes in aquatic environments. Springer, Berlin, pp 298–310

    Google Scholar 

  • Krebs CJ (1998) Ecological Methodology, 2nd edn. Harper Collins, New York, p 620

    Google Scholar 

  • Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D (2001) Environmental influences on regional deep-sea species diversity. Annu Rev Ecol Syst 31:51–93

    Article  Google Scholar 

  • Lorenzen S (1981) Entwurf eines phylogenetischen Systems der freilebenden Nematoden. Veröff Inst Meeresforsch Bremerhaven 7, pp 472

  • Manley O (1995) Branching of Atlantic Water within the Greenland-Spitsbergen passage: an estimate of recirculation. J Geophys Res 100(C10):20627–20634

    Article  Google Scholar 

  • Muthumbi AW, Vanreusel A, Duineveld G, Soetaert K, Vincx M (2004) Nematode community structure along the continental slope off the Kenyan Coast, Western Indian Ocean. Internat Rev Hydrobiol 89:188–205

    Article  Google Scholar 

  • Pfannkuche O, Thiel H (1988) Sample processing. In: Higgens RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institute Press, Washington DC/London, pp 134–145

    Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Primer-e (2006) PRIMER 6.1.6 for windows: plymouth routines in multivariate ecological research. Primer-e, Plymouth

  • Rachor E, Denisenko S (1997) Macrofauna: Quantitative Assessment. In: Stein R, Fahl K (eds) Scientific cruise report of the Arctic expedition ARK-XIII/2 of RV “Polarstern” in 1997. Rep Polar Res 255, pp 70–77

  • Renaud PE, Ambrose WG, Vanreusel A, Clough LM (2006) Nematode and macrofaunal diversity in central Arctic Ocean benthos. J Exp Mar Biol Ecol 330:297–306

    Article  Google Scholar 

  • Ritzrau W (1996) Microbial activity in the benthic boundary layer: small-scale distribution and its relationship with the hydrodynamic regime. Neth J Sea Res 36:171–180

    Article  Google Scholar 

  • Rutgers van der Loeff MM, Meyer R, Rudels B, Rachor E (2002) Resuspension and particle transport in the benthic nepheloid layer in and near Fram Strait in relation to faunal abundances and 234Th depletion. Deep Sea Res 49:1941–1958

    Article  CAS  Google Scholar 

  • Sakshaug E (1997) Biomass and productivity distributions and their variability in the Barents Sea. ICES J Mar Sci 54:341–350

    Article  Google Scholar 

  • Sakshaug E, Skjodal HR (1989) Life at the ice-edge. Ambio 18:60–67

    Google Scholar 

  • Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102(925):243–282

    Article  Google Scholar 

  • Sanders HL (1969) Benthic marine diversity and the stability-time hypothesis. In: Brookhaven Symposia on Biology 22, pp 71–81

  • Schewe I, Soltwedel T (2003) Benthic response to ice-edge induced particle flux in the Arctic Ocean. Polar Biol 26:610–620

    Article  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shuman FR, Lorenzen CF (1975) Quantitative degradation of chlorophyll by a marine herbivore. Limnol Oceanogr 20:580–586

    CAS  Google Scholar 

  • Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Martinez Arbizu P (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518–528

    Article  PubMed  Google Scholar 

  • Soetaert K, Heip C (1995) Nematode assemblages of deep-sea and shelf break sites in the North Atlantic and Mediterranean Sea. Mar Ecol Prog Ser 125:171–183

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1994) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman, New York, p 880

    Google Scholar 

  • Soltwedel T, Pfannkuche O, Thiel H (1996) The size structure of deep-sea meiobenthos in the North-Eastern Atlantic: nematode size spectra in relation to environmental variables. J Mar Biol Assoc UK 76:327–344

    Article  Google Scholar 

  • Soltwedel T, Mokievsky V, Schewe I (2000) Benthic activity and biomass on the Yermak Plateau and in adjacent deep-sea regions northwest of Svalbard. Deep Sea Res 47:1761–1785

    Article  CAS  Google Scholar 

  • StatSoft Inc (2005) STATISTICA for windows. StatSoft Inc, Tulsa

  • Steyaert M, Moodley L, Nadong T, Moens T, Soetaert K, Vincx M (2007) Responses of intertidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345:175–184

    Article  CAS  Google Scholar 

  • Thiel H (1978) Benthos in upwelling regions. In: Boje R, Tomczak M (eds) Upwelling ecosystems. Springer, Berlin, pp 124–138

    Google Scholar 

  • Thiel H, von Juterzenka K, Klages M, Kulescha F, Sablotny S (1997) Epifauna/Megafauna: quantitative assessment. In: Stein R, Fahl K (eds) Scientific cruise report of the Arctic expedition ARK-XIII/2 of RV “Polarstern” in 1997. Rep Polar Res 255, pp 67–70

  • Tietjen JH (1989) Ecology of deep-sea nematodes from the Puerto Rico Trench area and Hatteras Abyssal Plain. Deep Sea Res I 10:1579–1594

    Article  Google Scholar 

  • Vanaverbeke J, Arbizu PM, Dahms H-U, Schminke HK (1997a) The metazoan meiobenthos along a depth gradient in the Arctic Laptev Sea with special attention to nematode communities. Polar Biol 18:391–401

    Article  Google Scholar 

  • Vanaverbeke J, Soetaert K, Heip C, Vanreusel A (1997b) The metazoan meiobenthos along the continental slope of the Goban Spur (NE Atlantic). J Sea Res 38:93–107

    Article  Google Scholar 

  • Vanhove S, Arntz WE, Vincx M (1999) Comparative study of the nematode communities on the southeastern Weddell Sea shelf and slope (Antarctica). Mar Ecol Prog Ser 181:237–256

    Article  Google Scholar 

  • Vanreusel A, Clough L, Jacobsen K, Ambrose W, Jivaluk J, Ryheul V, Herman R, Vincx M (2000) Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res I 47:1855–1879

    Article  Google Scholar 

  • Vincx M, Bett BJ, Dinet A, Ferrero T, Gooday AJ, Lambshead PJD, Pfannkuche O, Soltwedel T, Vanreusel A (1994) Meiobenthos of the deep Northeast Atlantic. Adv Mar Biol 30:1–88

    Article  Google Scholar 

  • Wheeler PA, Gosselin M, Sherr E, Thibault D, Kirchman DL, Benner R, Whitledge TE (1996) Active cycling of organic carbon in the central Arctic Ocean. Nature 380:697–699

    Article  CAS  Google Scholar 

  • Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv för Zoologi 4:439–484

    Google Scholar 

  • Wieser W (1960) Benthic studies in Buzzards Bay. II. The meiofauna. Limnol Oceanogr 5:121–137

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the crews of RV ‘Polarstern’ and RV ‘Maria S. Merian’ for their helpful support during the expeditions between 1997 and 2006, and Anja Pappert, Daniela Freese, Anne-Maria Grave and Stephanie Simon for assistance with the measurements of various biogenic sediment compounds, bacterial counts and the meiofauna sortings. We also gratefully acknowledge two anonymous reviewers for their valuable comments on the manuscript. This is publication awi-n17512 of the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Soltwedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltwedel, T., Mokievsky, V., Schewe, I. et al. Yermak Plateau revisited: spatial and temporal patterns of meiofaunal assemblages under permanent ice-coverage. Polar Biol 32, 1159–1176 (2009). https://doi.org/10.1007/s00300-009-0612-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0612-7

Keywords

Navigation