Skip to main content

Advertisement

Log in

Raman study of apatite amorphised with swift heavy ions under various irradiation conditions

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Crystallographically oriented Durango fluorapatites were exposed to swift heavy ions (Xe, Ta, Au, U) at different irradiation conditions. Beam-induced sample modifications were investigated with respect to the effect of fluence (109–1013 ions/cm2), electronic energy loss (18–27 keV/nm), and pressure (3.6–11.5 GPa) applied during irradiation. In situ high-pressure irradiation was performed in diamond anvil cells. Confocal Raman spectroscopy was used to trace the occurring changes in the crystal lattice. Fragmentation of the crystal specimen depends on the orientation and sample thickness and was found to scale with energy loss and fluence. The radiation damage for irradiation along the c-axis was found to be larger than for the 〈hk0〉 direction, independent of the confining pressure. Observations on samples irradiated at high pressures indicate a stabilising effect, leading to reduced amorphisation in comparison to the samples irradiated without pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barbarand J, Carter A, Wood I, Hurford T (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198:107–137

    Article  Google Scholar 

  • Bertel E, Märk TD (1983) Fission tracks in minerals: annealing kinetics, track structure and age correction. Phys Chem Miner 9:197–204

    Article  Google Scholar 

  • Boyer LL, Fleury PA (1974) Determination of interatomic interactions Ca10(PO4)6F2 (fluorapatite) from structural and lattice-dynamical data. Phys Rev B 9:2693–2700

    Article  Google Scholar 

  • Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics: I experimental results. Am Mineral 84:1213–1223

    Google Scholar 

  • Comodi P, Liu Y, Frezzotti ML (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part II: In situ micro-Raman spectroscopic investigation. Phys Chem Miner 28:225–231

    Article  Google Scholar 

  • Crowley KD, Cameron M, Schaefer RL (1990) Annealing of etchable fission-track damage in F-, OH-, Cl- and Sr-apatite: 1. Systematics and preliminary interpretations. Nucl Tracks Radiat Meas 17:409–410

    Article  Google Scholar 

  • Crowley KD, Cameron M, Schaefer RL (1991) Experimental studies of annealing of etched fission tracks in fluorapatite. Geochim Cosmochim Acta 55:1449–1465

    Article  Google Scholar 

  • De Wolf I (1996) Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond Sci Technol 11:139–154

    Article  Google Scholar 

  • Devarajan V, Klee WE (1981) A potential model for fluorapatite. Phys Chem Miner 7:35–42

    Article  Google Scholar 

  • Donelick RA (1991) Crystallographic orientation dependence of mean etchable fission track length in apatite: an empirical model and experimental observations. Am Mineral 76:83–91

    Google Scholar 

  • Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission track annealing kinetics: II crystallographic orientation effects. Am Mineral 84:1224–1234

    Google Scholar 

  • Glasmacher UA, Lang M, Keppler H, Langenhorst F, Neumann R, Schardt D, Trautmann C, Wagner GA (2006) Phase transitions in solids stimulated by simultaneous exposure to high pressure and relativistic heavy ions. Phys Rev Lett 96:195701

    Article  Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328

    Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chem Geol 59:237–253

    Article  Google Scholar 

  • Jaskierowicz G, Dunlop A, Jonckheere R (2004) Track formation in fluorapatite irradiated with energetic cluster ions. Nucl Instrum Methods Phys Res B 222:213–227

    Article  Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:1–7

    Article  Google Scholar 

  • Kohn BP, Belton DX, Brown RW, Gleadow AJW, Green PF, Lovering JF (2003) Comment on: “Experimental evidence for the pressure dependence of fission-track annealing in apatite” by A.S. Wendt et al. [Earth Planet. Sci. Lett. 201 (2002) 593–607]. Earth Planet Sci Lett 215:299–306

    Article  Google Scholar 

  • Konzett J, Frost DJ (2009) The High P-T Stability of Hydroxyl-apatite in Natural and Simplified MORB—an experimental study to 15 GPa with implications for transport and storage of phosphorus and halogens in subduction zones. J Petrol 50:2043–2062

    Article  Google Scholar 

  • Kravitz LC, Kingsley JD, Elkin EL (1968) Raman and infrared studies on coupled PO4-vibrations. J Chem Phys 49:4600–4610

    Article  Google Scholar 

  • Lang M, Lian J, Zhang F, Hendriks BWH, Trautmann C, Neumann R, Ewing RC (2008a) Fission tracks simulated by swift heavy ions at crustal pressures and temperatures. Earth Planet Sci Lett 274:355–358

    Article  Google Scholar 

  • Lang M, Zhang F, Lian J, Trautmann C, Neumann R, Ewing RC (2008b) Irradiation-induced stabilization of zircon (ZrSiO4) at high pressure. Earth Planet Sci Lett 269:291–295

    Article  Google Scholar 

  • Lang M, Zhang F, Lian J, Trautmann C, Neumann R, Ewing RC (2009a) Combined high pressure and heavy-ion irradiation a novel approach. J Synchrotron Radiat 16:773–777

    Article  Google Scholar 

  • Lang M, Zhang F, Zhang J, Wang J, Schuster B, Trautmann C, Neumann R, Becker U, Ewing RC (2009b) Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nat Mater 8:793–797

    Article  Google Scholar 

  • Liu J, Glasmacher UA, Lang M, Trautmann C, Voss KO, Neumann R, Wagner GA, Miletich R (2008) Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure. Appl Phys A 91:17–22

    Article  Google Scholar 

  • Mao H, Xu J, Bell P (1986) Calibration of the ruby gauge to 800 kbar under quasihydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Miletich R, Allan D, Kuhs W (2000) High-pressure single-crystal techniques. Rev Mineral Geochem 41:445–519

    Google Scholar 

  • Miro S, Grebille D, Chateigner D, Pelloquin D, Stoquert JP, Grob JJ, Costantini JM, Studer F (2005) X-ray diffraction study of damage induced by swift heavy ion irradiation in fluorapatite. Nucl Instrum Methods Phys Res B 227:306–318

    Article  Google Scholar 

  • O’Shea DC, Bartlett ML, Young RA (1974) Compositional analysis of apatites with laser-raman spectroscopy: (OH, F, CL) apatites. Arch Oral Biol 19:995–1006

    Article  Google Scholar 

  • Paul TA, Fitzgerald PG (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. Am Mineral 77:336–344

    Google Scholar 

  • Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481

    Article  Google Scholar 

  • Rabone JAL, Carter A, Hurford AJ, de Leeuw NH (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Phys Chem Miner 35:583–596

    Article  Google Scholar 

  • Sandhu AS, Singh L, Ramola RC, Singh S, Virk HS (1990) Annealing kinetics of heavy ion radiation damage in crystalline materials. Nucl Instrum Methods Phys Res B 46:122–124

    Article  Google Scholar 

  • Schouwink P, Miletich R, Ullrich A, Glasmacher UA, Trautmann C, Neumann R, Kohn BP (2009) Ion tracks in apatite at high pressures. The effect of crystallographic track orientation on the elastic properties of fluorapatite under hydrostatic compression. Phys Chem Miner. doi:10.1007/s00269-009-0340-0

  • Schuster B, Lang M, Klein R, Trautmann C, Neumann R, Benyagoub A (2009) Structural phase transition in ZrO2 induced by swift heavy ion irradiation at high-pressure. Nucl Instrum Methods Phys Res B 267:964–968

    Article  Google Scholar 

  • Tisserand R, Rebetez M, Grivet M, Bouffard S, Benyagoub A, Levesque F, Carpena J (2004) Comparative amorphization quantification of two apatitic materials irradiated with heavy ions using XRD and RBS results. Nucl Instrum Methods Phys Res B 215:129–136

    Article  Google Scholar 

  • Toulemonde M (1995) Defect creation by swift heavy ions: material modifications in the electronic stopping power regime. Appl Radiat Isot 46:375–381

    Article  Google Scholar 

  • Toulemonde M, Dufour C, Meftah A, Paumier E (2000) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res B 166:903–912

    Article  Google Scholar 

  • Trautmann C, Toulemonde M, Costantini JM, Grob JJ, Schwartz K (2000) Swelling effects in lithium fluoride induced by swift heavy ions. Phys Rev B 62:13–16

    Article  Google Scholar 

  • Trautmann C, Boccanfuso M, Benyagoub A, Klaumünzer S, Schwartz K, Toulemonde M (2002) Swelling of insulators induced by swift heavy ions. Nucl Instrum Methods Phys Res B 191:144–148

    Article  Google Scholar 

  • Tsuda H, Arends J (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites. J Dent Res 73:1703–1710

    Google Scholar 

  • Vidal O, Wendt AS, Chadderton LT (2003) Further discussion on the pressure dependence of fission track annealing in apatite: reply to the critical comment of Kohn et al. Earth Planet Sci Let 215:307–316

    Article  Google Scholar 

  • Villa F, Grivet M, Rebetez M, Dubois C, Chambaudet A, Chevarier N, Martin P, Brossard F, Blondiaux G, Sauvage T, Toulemonde M (1999) Damage morphology of Kr ion tracks in apatite: dependence on dE/dx. Rad Meas 31:65–70

    Article  Google Scholar 

  • Villa F, Grivet M, Rebetez M, Dubois C, Chambaudet A, Chevarier N, Blondiaux G, Sauvage T, Toulemonde M (2000) Damage morphology of Kr ion tracks in apatite: dependence on thermal annealing. Nucl Instrum Methods Phys Res B 168:72–77

    Article  Google Scholar 

  • Wagner GA, van den Haute P (1992) Fission track dating. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Wang LM, Cameron M, Weber WJ, Crowley KD, Ewing RC (1993) In situ TEM observation of radiation induced amorphization of crystals with apatite structures. Spring Meeting of the Materials Research Society, San Francisco

    Google Scholar 

  • Wang XB, Shen ZX, Tang SH, Kuok MH (1999) Near infrared excited micro-Raman spectra of 4:1 methanol–ethanol mixture and ruby fluorescence at high pressure. J Appl Phys 85:8011–8017

    Article  Google Scholar 

  • Weber WJ (2000) Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl Instrum Methods Phys Res B 98:166–167

    Google Scholar 

  • Weber WJ, Ewing RC, Meldrum A (1997) The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. J Nucl Mater 250:147–155

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Catlow CRA, de la Diaz Rubia T, Hobbs LW, Kinoshita C, Matzke HJ, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Mater Res 13(6):1434–1484

    Article  Google Scholar 

  • Wendt AS, Vidal O, Chadderton LT (2002) Experimental evidence for the pressure dependence of fission track annealing in apatite. Earth Planet Sci Lett 201:593–607

    Article  Google Scholar 

  • Wendt AS, Vidal O, Chadderton LT (2003) The effect of simultaneous temperature, pressure and stress on the experimental annealing of spontaneous fission tracks in apatite: a brief overview. Radiat Meas 36:339–342

    Article  Google Scholar 

  • Williams Q, Knittle E (1996) Infrared and Raman spectra of Ca5(PO4)3F-fluorapatite at high pressures: compression-induced changes in phosphate site and Davydov splitting. J Phys Chem Solids 57:417–422

    Article  Google Scholar 

  • Xie X, Minitti ME, Chen M, Mao HK, Wang D, Shu J, Fei Y (2003) Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur J Miner 15:1001–1005

    Article  Google Scholar 

  • Young EJ, Myers AT, Munson EL, Conklin NM (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico, US Geol Survey Prof Paper 650-D, pp D84–D93

  • Zattin M, Bersani D, Carter A (2007) Raman microspectroscopy: a non-destructive tool for routine calibration of apatite crystallographic structure for fission-track analyses. Chem Geol 240:197–204

    Article  Google Scholar 

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New York

    Google Scholar 

Download references

Acknowledgments

We thank Ilona Fin and Oliver Wienand for the careful preparation of the polished crystal sections. Financial support within the BMBF Verbundprojekt (Bundesministerium für Bilung und Forschung, project grant 05KK7VH1) and GSI research grant (project HDGLAS) is acknowledged. Background correction and mathematical fitting of the bands were done with the free software FITYK 0.89 (http://www.unipress.waw.pl/fityk/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weikusat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weikusat, C., Glasmacher, U.A., Schuster, B. et al. Raman study of apatite amorphised with swift heavy ions under various irradiation conditions. Phys Chem Minerals 38, 293–303 (2011). https://doi.org/10.1007/s00269-010-0403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0403-2

Keywords

Navigation